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Doing Data Analysis with the
Multilevel Model for Change

We are restless because of incessant change, but we would

be frightened if change were stopped.
—Lyman Bryson

In chapter 3, we used a pair of linked statistical models to establish the
multilevel model for change. Within this representation, a level-1 sub-
model describes how each person changes over time and a level-2 sub-
model relates interindividual differences in change to predictors. To
introduce these ideas in a simple context, we focused on just one method
of estimation (maximum likelihood), one predictor (a dichotomy), and
a single multilevel model for change.

We now delve deeper into the specification, estimation, and interpre-
tation of the multilevel model for change. Following introduction of
a new data set (section 4.1), we present a composite formulation of the
model that combines the level-1 and level-2 submodels together into a
single equation (section 4.2). The new composite model leads naturally
to consideration of alternative methods of estimation (section 4.3). Not
only do we describe two new methods—generalized least squares (GLS) and
iterative generalized least squares (IGLS)—within each, we distinguish
further between two types of approaches, the full and the restricted.

The remainder of the chapter focuses on real-world issues of data
analysis. Our goal is to help you learn how to articulate and implement
a coherent approach to model fitting. In section 4.4, we present two “stan-
dard” multilevel models for change that you should always fit initially in
any analysis—the unconditional means model and the unconditional growth
model—and we discuss how they provide invaluable baselines for subse-
quent comparison. In section 4.5, we discuss strategies for adding time-
invariant predictors to the multilevel model for change. We then discuss
methods for testing complex hypotheses (sections 4.6 and 4.7) and
examining model assumptions and residuals (section 4.8). We conclude,
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in section 4.9, by recovering “model-based” estimates of the individual
growth trajectories that improve upon the exploratory person-by-person
OLS estimates introduced in chapter 3. To highlight concepts and strate-
gies rather than technical details, we continue to limit our presentation
in several ways, by using: (1) a linear individual growth model; (2) a time-
structured data set in which everyone shares the same data collection
schedule; and (3) a single piece of statistical software (MLwiN).

4.1 Example: Changes in Adolescent Alcohol Use

As part of a larger study of substance abuse, Curran, Stice, and Chassin
(1997) collected three waves of longitudinal data on 82 adolescents. Each
year, beginning at age 14, the teenagers completed a four-item instrument
assessing their alcohol consumption during the previous year. Using an 8-
point scale (ranging from 0 = “not at all” to 7 = “every day”), adolescents
described the frequency with which they (1) drank beer or wine, (2) drank
hard liquor, (3) had five or more drinks in a row, and (4) got drunk. The
data set also includes two potential predictors of alcohol use: COA, a
dichotomy indicating whether the adolescent is a child of an alcoholic
parent; and PEER, a measure of alcohol use among the adolescent’s peers.
This latter predictor was based on information gathered during the initial
wave of data collection. Participants used a 6-point scale (ranging from 0
="none” to 5 ="all”) to estimate the proportion of their friends who drank
alcohol occasionally (one item) or regularly (a second item).

In this chapter, we explore whether individual trajectories of alcohol
use during adolescence differ according to the history of parental alco-
holism and early peer alcohol use. Before proceeding, we note that the
values of the outcome we analyze, ALCUSE, and of the continuous pre-
dictor, PEER, are both generated by computing the square root of the mean
of participants’ responses across each variable’s constituent items. Trans-
formation of the outcome allows us to assume linearity with AGL at level-
I; transformation of the predictor allows us to assume linearity with PEER
at level-2. Otherwise, we would need to posit nonlinear models at both
levels in order to avoid violating the necessary linearity assumptions. If
you find these transformations unsettling, remember that each item’s
original scale was arbitrary, at best. As in regular regression, analysis is
often clearer if you fit a linear model to transformed variables instead of
a nonlinear model to raw variables. We discuss this issue further when we
introduce strategies for evaluating the tenability of the multilevel model’s
assumptions in section 4.8, and we explicitly introduce models that relax
the linearity assumption in chapter 6.
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Figure 4.1. Identifying a suitable functional form for the level-1 submodel. Empirical
growth plots with superimposed OLS trajectories for 8 participants in the alcohol use

study.

To inform model specification, figure 4.1 presents empirical change
plots with superimposed OLS-estimated linear trajectories for 8 adoles-
cents randomly selected from the larger sample. For them, and for
most of the other 74 not shown, the relationship between (the now-
transformed) ALCUSE and AGE appears linear between ages 14 and 16.
This suggests that we can posit a level-1 individual growth model that is
linear with adolescent age Y, = my, + 7;;,(AGE; — 14) + g;, where Y} is ado-
lescent ¢’s value of ALCUSE on occasion j and AGE; is his or her age (in
years) at that time. We have centered AGE on 14 years (the age at the
first wave of data collection) to facilitate interpretation of the intercept.

As you become comfortable with model specification, you may find it
easier to write the level-1 submodel using a generic variable 7IME;; instead
of a specific temporal predictor like (AGE; — 14):

K] =Ty; +ﬂ:1lTI]\4E2j +£fj (4.1)
This representation is general enough to apply to all longitudinal data

sets, regardless of outcome or time scale. Its parameters have the usual
interpretations. In the population from which this sample was drawn:
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* m, represents individual 7’s true initial status, the value of the
outcome when TIME; = 0.

* 1, represents individual ¢’s true rate of change during the period
under study.

* ¢;represents that portion of individual #’s outcome that is unpre-
dicted on occasion j.

We also continue to assume that the ¢; are independently drawn from a
normal distribution with mean 0 and variance o They are also uncor-
related with the level-1 predictor, TIME, and are homoscedastic across
occasions.

To inform specification of the level-2 submodel, figure 4.2 presents
exploratory OLS-itted linear change trajectories for a random sample of
32 of the adolescents. To construct this display, we twice divided this
subsample into two groups: once by COA (top panel) and again by PEER
(bottom panel). Because PEER is continuous, the bottom panel repre-
sents a split at the sample mean. Thicker lines represent coincident tra-
jectories—the thicker the line, the more trajectories. Although each plot
suggests considerable interindividual heterogeneity in change, some
patterns emerge. In the top panel, ignoring a few extreme trajectories,
children of alcoholic parents have generally higher intercepts (but no
steeper slopes). In the bottom panel, adolescents whose young friends
drink more appear to drink more themselves at age 14 (that is, they tend
to have higher intercepts), but their alcohol use appears to increase at a
slower rate (they tend to have shallower slopes). This suggests that both
COA and PEER are viable predictors of change, each deserving further
consideration.

We now posit a level-2 submodel for interindividual differences in
change. For simplicity, we focus only on COA, representing its hypothe-
sized effect using the two parts of the level-2 submodel, one for true initial
status (7,) and a second for true rate of change (7,):

o: = Yoo + Y COA, + $oi

(4.2)
T = Y10 +71COA + (..

In the level-2 submodel:

* %o and %y, the level-2 intercepts, represent the population average
initial status and rate of change, respectively, for the child of a
non-alcoholic (COA = 0). If both parameters are 0, the average
child whose parents are non-alcoholic uses no alcohol at age 14
and does not change his or her alcohol consumption between
ages 14 and 16.
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Figure 4.2. Identifying potential predictors of change by examining OLS fitted trajecto-
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panel).
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* % and ¥, the level-2 slopes, represent the effect of COA on the
change trajectories, providing increments (or decrements) to
initial status and rates of change, respectively, for children of alco-
holics. If both parameters are 0, the average child of an alcoholic
initially uses no more alcohol than the average child of a non-
alcoholic and the rates of change in alcohol use do not differ as well.

e {y;and (), the level-2 residuals, represent those portions of initial
status or rate of change that are unexplained at level-2. They
represent deviations of the individual change trajectories around
their respective group average trends.

We also continue to assume that {; and {;, are independently drawn from
a bivariate normal distribution with mean 0, variances o3 and o3}, and
covariance 0y;. They are also uncorrelated with the level-2 predictor, COA,
and are homoscedastic over all values of COA.

As in regular regression analysis, we can modify the level-2 submodel
to include other predictors—for example, replacing COA with PEER or
adding PEER to the current model. We illustrate these modifications in
section 4.5. For now, we continue with a single level-2 predictor so that
we can introduce a new idea: the creation of the composite multilevel
model for change.

4.2 The Composite Specification of the
Multilevel Model for Change

The level-1/level-2 representation above is not the only specification of
the multilevel model for change. A more parsimonious representation
arises if you collapse the level-1 and level-2 submodels together alge-
braically into a single composite model. The composite representation,
while identical to the level-1/level-2 specification mathematically, pro-
vides an alternative way of codifying hypotheses and is the specification
required by many multilevel statistical software programs (including
MLwiN and SAS PROC MIXED).

To derive the composite specification, first notice that any pair of
linked level-1 and level-2 submodels share some common terms. Specifi-
cally, the individual growth parameters of the level-1 submodel are the
outcomes of the level-2 submodel. We can therefore collapse the sub-
models together by substituting for m,; and m;; from the level-2 submodel
(in equation 4.2, say) into the level-1 submodel (equation 4.1), as follows:

= (Yoo + Y0 COA; + §o, ) + (Y10 + Y1nCOA, + Cn)THV[Eg +E;.
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The first parenthesis contains the level-2 specification for the level-1
intercept, ; the second parenthesis contains the level-2 specification for
the level-1 slope, ;. Multiplying out and rearranging terms then yields
the composite multilevel model for change:

Yy = [¥o0 +70TIME; +Y0COA; + 71, (COA X TIME, )]
+(Coi + CuTIME; + €],

where we once again use brackets to distinguish the model’s structural
and stochastic components.

Even though the composite specification in equation 4.3 appears more
complex than the level-1/level-2 specification, the two forms are logically
and mathematically equivalent. Each posits an identical set of links
between an outcome (Y}) and predictors (here, TIME and COA). The
specifications differ only in how they organize the hypothesized rela-
tionships, each providing valuable insight into what the multilevel model
represents. The advantage of the level-1/level-2 specification is that it
reflects our conceptual framework directly: we focus first on individual
change and next on interindividual differences in change. It also pro-
vides an intuitive basis for interpretation because it directly identifies
which parameters describe interindividual differences in initial status (¥
and %,) and which describe interindividual differences in change (#, and
%1)- The advantage of the composite specification is that it clarifies which
statistical model is actually being fit to data when the computer begins to
iterate.

In introducing the composite model, we do not argue that its repre-
sentation is uniformly superior to the level-1/level-2 specification. In the
remainder of this book, we use both representations, adopting whichever
best suits our purposes at any given time. Sometimes we invoke the sub-
stantively appealing level-1/level-2 specification; other times we invoke
the algebraically parsimonious composite specification. Because both are
useful, we recommend that you take the time to become equally facile
with each. To aid in this process, below, we now delve into the structural
and stochastic components of the composite model itself.

(4.3)

4.2.1 The Structural Component of the
Composite Model

The structural portion of the composite multilevel model for change, in
the first set of brackets in equation 4.3, may appear unusual, at least at
first. Comfortingly, it contains all the original predictors—here, COA and
TIMFE—as well as the now familiar fixed effects, %9, %1, %0, and %;. In
chapter 3, we demonstrated that the 7y’s describe the average change
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trajectories for individuals distinguished by their level-2 predictor values:
%o and ¥, are the intercept and slope of the average trajectory for the
children of parents who are not alcoholic; (% + %) and (% + %) are the
mtercept and slope of the average trajectory for the children of alcoholics.
The y’sretain these interpretations in the composite model. To demon-
strate this equivalence, let us substitute different values of COA into the
model’s structural portion and recover the population average change tra-
jectories. As COA has only two values, 0 and 1, recovery is easy. For the chil-
dren of non-alcoholic parents, we substitute 0 into equation 4.3 to find:

Population average

trajectory for the children | =Yg + ¥10TIME; + 510+ 7v,,(0 x TIME)
of non-alchoholic parents

= Yoo + Y10 TIME;;,
(4.42)

a trajectory with intercept %, and slope %, as indicated in the previous
paragraph. For the children of alcoholic parents, we substitute in 1 to find:

Population average

trajectory for the children | = Yo + y10TIME; + 71 1+ Y1 (1 X TIME,,)
of alchoholic parents

= (Yoo +Yor) + Yo+ Y1 )TIME;,
(4.4b)

a trajectory with intercept (%o + %) and slope (%o + %) also as just
described.

Although their interpretation is identical, the 7’s in the composite
model describe patterns of change in a different way. Rather than pos-
tulating first how ALCUSE is related to TIME and the individual growth
parameters, and second how the individual growth parameters are
related to COA, the composite specification in equation 4.3 postulates
that ALCUSE depends simultaneously on: (1) the level-1 predictor, TIME;
(2) the level-2 predictor, COA; and (3) the cross-level interaction, COA by
TIME. From this perspective, the composite model’s structural portion
strongly resembles a regular regression model with predictors, TIME and
COA, appearing as main effects (associated with ¥, and %, respectively)
and in a cross-level interaction (associated with %).

How did this cross-level interaction arise, when the level-1/level-2 spec-
ification appears to have no similar term? Its appearance arises from the
“‘multiplying out” procedure used to generate the composite model.
When we substitute the level-2 submodel for 7, into its appropriate posi-
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tion in the level-1 submodel, the parameter 7, previously associated only
with COA, gets multiplied by TIME. In the composite model, then, this
parameter becomes associated with the interaction term, COA by TIME.
This association makes sense if you consider the following logic. When
%1 1s non-zero in the level-1/level-2 specification, the slopes of the change
trajectories differ according to values of COA. Stated another way, the
effect of TIME (whose effect is represented by the slopes of the change
trajectories) differs by levels of COA. When the effects of one predictor
(here, TIME) difter by the levels of another predictor (here, COA), we
say that the two predictors interact. The cross-level interaction in the com-
posite specification codifies this effect.

4.2.2 The Stochastic Co\mponent of the
Composite Model

The random effects of the composite model appear in the second set of
brackets in equation 4.3. Their representation is more mysterious than
that of the fixed effects and differs dramatically from the simple error
terms in the separate submodels. But as you would expect, ultimately,
they have the same meaning under both the level-1/level-2 and com-
posite representations. In addition, their structure in the composite
model provides valuable insight into our assumptions about the behav-
ior of residuals over time in longitudinal data.

To understand how to interpret this stochastic portion, recall that in
chapter 3, we described how the random effects allow each person’s true
change trajectory to be scattered around the relevant population average
trajectory. For example, given that the population average change tra-
jectory for the children of non-alcoholic parents (in equation 4.4a has
intercept J, and slope o, the level-2 residuals, {,, and {);, allow individ-
ual 7’s trajectory to differ from this average. The true trajectory for indi-
vidual ¢, a specific child of non-alcoholic parents, therefore has intercept
(Y0 + Co:) and slope (%10 + 1) . Once this trajectory has been determined,
the level-1 residuals, €;, then allow his or her data for occasion j to be
scattered randomly about it.

We can see how the composite model represents this conceptualiza-
tion by deriving the true trajectories for different individuals with spe-
cific predictor values. Using equation (4.3), we note that if adolescent :
has nonalcoholic parents (COA = 0):

Yy =Yoo +710TIME;; + 70,0+ 71, (0 X TIME; N +[8oi + 8 TIME; + &;]
= [}/O() + '}/]()TIMEU] + [g()i + C]lTIMEl/ + E‘i]
= (Yoo +80i) + (Y10 + 1)) TIME; + €,
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leading to a true trajectory with intercept (¥ + &) and slope (%o + &)
as described above. If adolescent 7 has an alcoholic parent (COA = 1):

=[(Yoo + Yo) + (Y10 + ¥ DTIME; 1+ [Co; + . TIME; + €]
= (Yoo +Yo1 +Coi) + (Y10 + Y11 + E1)TIME ; + €5,

leading to a true trajectory with intercept (¥, + ¥ + &) and slope (¥, +
Y1+ ).

A distinctive feature of the composite multilevel model is its “com-
posite residual,” the three terms in the second set of brackets on the right
of equation 4.3 that combine together the level-1 residual and the two
level-2 residuals:

ComPOSite reSidual: [501’ + CI,TH\/IE,I + 8”]

The composite residual is not a simple sum. Instead, the second level-2
residual, {j;, is multiplied by the level-1 predictor, TIME, before joining
its siblings. Despite its unusual construction, the interpretation of the
composite residual is straightforward: it describes the difference between
the observed and the expected value of Y for individual 7 on occasion ;.

The mathematical form of the composite residual reveals two impor-
tant properties about the occasion-specific residuals not readily apparent
in the level-1/level-2 specification: they can be both autocorrelated and
heteroscedastic within person. As we describe briefly below, and more
elaborately explain in chapter 7, these are exactly the kinds of properties
that you would expect among residuals for repeated measurements of
a changing outcome.

When residuals are heteroscedastic, the unexplained portions of each
person’s outcome have unequal variances across occasions of measure-
ment. Although heteroscedasticity has many roots, one major cause is the
effects of omitted predictors—the consequences of failing to include vari-
ables that are, in fact, related to the outcome. Because their effects have
nowhere else to go, they bundle together, by default, into the residuals.
If their impact differs across occasions, the residual’s magnitude may
differ as well, creating heteroscedasticity. The composite model allows for
heteroscedasticity via the level-2 residual §;;. Because {); is multiplied by
TIME in the composite residual, its magnitude can differ (linearly, at
least, in a linear level-1 submodel) across occasions. If there are system-
atic differences in the magnitudes of the composite residuals across occa-
sions, there will be accompanying differences in residual variance, hence
heteroscedasticity.

When residuals are autocorrelated, the unexplained portions of each
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person’s outcome are correlated with each other across repeated occa-
sions. Once again, omitted predictors, whose effects are bundled into the
residuals, are a common cause. Because their effects may be present iden-
tically in each residual over time, an individual’s residuals may become
linked across occasions. The presence of the time-invariant {,’s and {,/’s
in the composite residual of equation 4.3 allows the residuals to be auto-
correlated. Because they have only an “¢” subscript (and no “”), they
feature identically in each individual’s composite residual on every occa-

sion, creating the potential for autocorrelation across time.

4.3 Methods of Estimation, Revisited

When we discussed estimation in section 3.4, we focused on the method
of maximum likelihood (ML). As we suggested then, there are other ways
of fitting the multilevel model for change. Below, in section 4.3.1, we
describe two other methods that are extensions of the popular OLS
estimation method, with which you are already familiar: generalized least
squares (GLS) estimation and iterative generalized least squares (IGLS) esti-
mation. In section 4.3.2, we delve deeper into ML methods themselves
and distinguish further between two important types of ML estimation—
called fulland restricted maximum-likelihood estimation. Finally, in section
4.3.3, we comment on the various methods and how you might choose
among them.

4.3.1 Generalized Least-Squares Estimation

Generalized leastsquares (GLS) estimation is an extension of ordinary
least-squares estimation that allows you to fit statistical models under
more complex assumptions on the residuals. Like OLS, GLS seeks
parameter estimates that minimize the sum of squared residuals.' But
instead of requiring the residuals to be independent and homoscedastic,
as OLS does, GLS allows them to be autocorrelated and heteroscedastic,
as in the composite multilevel model for change.

To understand how you can use GLS to fit the composite multilevel
model for change, first reconsider the inefficient exploratory OLS analy-
ses of chapter 2. In section 2.3, our exploratory analyses actually mirrored
our later level-1/level-2 specification of the multilevel model for change.
To fit the model, we used OLS methods twice. First, in a set of exploratory
level-1 analyses, we divided the person-period data set into person-
specific chunks (by ID) and fit separate within-person regressions of the
outcome on TIME. Then, in an exploratory level-2 analysis, we regressed
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the resultant individual growth parameter estimates on predictors. The
existence and form of the composite multilevel model for change sug-
gests that, instead of this piecewise analysis, you could keep the person-
period data set intact and regress the outcome (here, ALCUSE) on the
predictors in the structural portion of the composite model for change
(here, TIME, COA, and COA by TIME). This would allow you to estimate
the fixed effects of greatest interest (¥, %o, Y1, %1) without dividing the
data set into person-specific chunks.

Were you to use OLS to conduct this regression analysis in the full
person-period data set, the resultant regression coefficients (estimates of
Yoo, Yo, Y, %) would indeed be unbiased estimates of the composite
model’s fixed effects. Unfortunately, their standard errors would not
possess the optimal properties needed for testing hypotheses efficiently
because the residuals in the stochastic portion of the composite model
do not possess the “classical” assumptions of independence and
homoscedasticity. In other words, the OLS approach is simply inappro-
priate in the full person-period data set. To estimate the fixed effects effi-
ciently by fitting the composite model directly in the person-period data
set requires the methods of GLS estimation.

This leads to a conundrum. In reality, to estimate the fixed effects in
the composite model by a regression analysis in the entire person-period
data set, we need GLS methods. But to conduct a GLS analysis, we need
to know the shape and contents of the true error covariance matrix—
specifically we need to know the degree of autocorrelation and het-
eroscedasticity that actually exists among the residuals in the population
so that we can account for this error structure during GLS estimation.
We cannot know these population values explicitly, as they are hidden
from view; we only possess information on the sample, not the popula-
tion. Hence the conundrum: to conduct an appropriate analysis of the
composite multilevel model for change directly in the person-period data
set we need information that we do not, indeed cannot, know.

GLS addresses this conundrum using a two-stage approach. First, fit
the composite model by regressing ALCUSE on predictors TIME, COA,
and COA by TIME in the full person-period data set using OLS methods
and estimate the error covariance matrix using residuals from the OLS-
fitted model. Then, refit the composite model using GLS treating the esti-
mated error covariance matrix as though it were the #rue error covariance
matrix. In this process, the first stage uses OLS to provide starting values
(initial estimates) of the fixed effects. These starting values then yield pre-
dicted outcome values that allow computation of the residuals for each
person on each occasion. The population error covariance matrix is then
estimated using these residuals. In the second stage, compute revised GLS
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estimates of the fixed effects and associated standard errors under the
assumption that the estimated error covariance matrix from the first stage
Is a correct representation of the population error covariance matrix of
the composite model. All of this, of course, is hidden from view because
the computer does it for you.

If GLS estimation with two steps is good, could GLS estimation with
many steps be better? This simple question leads to an extension of GLS
known as IGLS (iterative generalized least squares). Instead of stopping
after one round of estimation and refitting, you ask the computer to
implement the approach repeatedly, each time using the previous set of
estimated fixed effects to re-estimate the error covariance matrix, which
then leads to GLS estimates of the fixed effects that are further refined.
After each round, you can ask the computer to check whether the current
set of estimates is an improvement over the last. If they have not improved
(as judged by criteria that you define, or the software package specifies
by default), then declare that the process has converged and stop, out-
putting the estimates, their standard errors, and model goodness-of-fit
statistics for your perusal.

As with all iterative procedures, the convergence of IGLS is not guar-
anteed. If your data set is small or severely unbalanced, or if your hypoth-
esized model is too complex, IGLS may iterate indefinitely. To prevent
this, all software packages invoke an upper limit on the number of itera-
tions for each analysis (that you can modify, if you wish). If an IGLS analy-
sis fails to converge after a pre-specified number of iterations, you can try
again, increasing this upper limit. If it still fails to converge, the estimates
may be incorrect and should be treated with caution. We illustrate the
use of IGLS methods later in this chapter and discuss issues of noncon-
vergence in section 5.2.

4.3.2 Full and Restricted Maximum-Likelihood
Estimation

Statisticians distinguish between two types of maximum likelihood esti-
mation: full (FML) and restricted (RML). These two variants on a common
theme differ in how the likelihood function is formed, which affects
parameter estimation and the strategies used to test hypotheses. You must
select a particular ML method before fitting models. Perhaps more impor-
tantly, you should understand which method your software package
selects as its default (although this can usually be overridden).
Although we were not specific in chapter 3, the ML method that we
described there was FML. The likelihood function described in section
3.4 assesses the joint probability of simultaneously observing all the
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sample data actually obtained. The sample likelihood, a function of the
data and the hypothesized model and its assumptions, contains all the
unknown parameters, both the fixed effects (the y’s) and the variance
components (0:, 0, 01, and 0y;). Under FML, the computer computes
those estimates of these population parameters that jointly maximize this
likelihood.

FML estimation is not without problems. Because of the way we con-
struct and maximize the likelihood function, FML estimates of the vari-
ance components (6%, 63, 635, and ;) contain FML estimates of the fixed
effects (the 7’s). This means that we ignore uncertainty about the fixed
effects when estimating the variance components, treating their values as
known. By failing to allocate some degrees of freedom to the estimation
of fixed effects, FML overstates the degrees of freedom left for estimat-
ing variance components and underestimates the variance components
themselves, leading to biased estimates when samples are small (they are
still asymptotically unbiased).

These concerns led statisticians to develop restricted maximum likeli-
hood (RML; Dempster Laird & Rubin, 1977). Because both FML and
RML require intensive numerical iteration when used to fit the multilevel
model for change, we cannot illustrate their differences algebraically. But
because similar issues arise when these methods are used to fit simpler
models, including the linear regression model for cross-sectional data, we
can illustrate their differences in this context where closed-form estimates
can be written down.

We begin by describing what happens when we use FML to fit a linear
regression model to cross-sectional data. Imagine using the following
simple regression model to predict an outcome, ¥, on the basis of p pre-
dictors, X; through X, in a sample of size n, Y;= B, + 3, X, + foXo, + -+ - +
ﬁ,,X,,; + &, where ¢ indexes individuals and g, represents the usual inde-
pendent, normally distributed residual with zero mean and homoscedas-
tic variance, o;. If it were somehow possible to know the true population
values of the regression parameters, the residual for individual 7 would
be: & =Y, — (B + BiXi; + BoXo: + - - - + B,X,). The FML estimator of the
unknown residual variance 0%, would then be the sum of squared resid-
uals divided by the sample size, n:

n
Ser
62 =+-—, (4.5a)
n
Because we imagine that we know the population values of the regression
coefficients, we need not estimate them to compute residuals, leaving n
degrees of freedom for the residual variance calculation.
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In practice, of course, we never know the true population values of the
regression parameters; we estimate them using sample data, and so:

g =Y - (ﬁn + B X +/~§2X2i +-- +B;9X/1i>-

Substituting these estimates into equation (4.5a) yields an FML estimate
of the residual variance:
»n
&
6; =+—, (4.5b)
n

because functions of FML estimators, the B’s, are themselves FML
estimators.

Notice that the denominator of the FML estimated residual variance
in equation 4.5b is the sample size n. Use of this denominator assumes
that we still have all the original degrees of freedom in the sample to
estimate this parameter. But because we estimated (p + 1) regression
parameters to compute the residuals, and did so with uncertainty, we used
up (p+ 1) degrees of freedom. An unbiased estimate of the residual vari-
ance decreases the denominator of equation 4.5b to account for this loss:

~2

e
- =] )
‘ n—(p+1)

The distinction between the estimated residual variances in equations
4.5b and 4.5c is exactly the same as that between full and restricted ML
estimation in the multilevel model for change. Like RML, equation 4.5¢
accounts for the uncertainty associated with estimating the regression
parameters (the fixed effects) before estimating the residual variance
(the variance components); like FML, equation (4.5b) does not.

How are RML estimates computed? Technical work by Patterson and
Thompson (1971) and Harville (1974) provides a conceptually appeal-
ing strategy. RML estimates of the variance components are those values
that maximize the likelihood of observing the sample residuals (not the
sample data). Once again, an iterative process is used. First, we estimate
the fixed effects, the 7’s, using some other method, often OLS or GLS.
Next, as in regular regression analysis, we use the 7’s to estimate a resid-
ual for each person on each occasion (by subtracting observed and
predicted values). Under the usual assumptions about the level-1 and
level-2 residuals—independence, homoscedasticity, and normality—we
can write down the likelihood of observing this particular collection of
“data” (that is, residuals), in terms of the residuals and the unknown

(4.5¢)
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variance components that govern their distributions. We then take the
logarithm of the restricted likelihood and maximize it to yield RML
estimates of the variance components, the only unknown parameters
remaining (as we have assumed that the fixed effects, the 7’s, are known).

For decades, controversy has swirled around the comparative advan-
tages of these two methods. Although Dempster et al. (1977, p. 344)
declared RML to be “intuitively more correct,” it has not proved to be
unilaterally better than FML in practice. In their review of simulation
studies that compare these methods for fitting multilevel models, Kreft
and deLeeuw (1998) find no clear winner. They suggest that some of the
ambiguity stems from the decreased precision that accompanies the
decreased small sample bias of RML estimation.

If neither approach is uniformly superior, why belabor this distinction?
An important issue is that goodness-of-fit statistics computed using the
two methods (introduced in section 4.6) refer to different portions of
the model. Under FML, they describe the fit of the entire model; under
RML, they describe the fit of only the stochastic portion (the random
effects). This means that the goodness-of-fit statistics from FML can be
used to test hypotheses about any type of parameter, either a fixed effect
or a variance component, but those from RML can be used only to test
hypotheses about variance components (not the fixed effects). This dis-
tinction has profound implications for hypothesis testing as a compo-
nent of model building and data analysis (as we will soon describe).
When we compare models that differ only in their variance components,
we can use either method. When we compare models that differ in both
fixed effects and variance components, we must use full information
methods. To further complicate matters, different software programs use
different methods as their default option (although all can use either
approach). SAS PROC MIXED, for example, uses RML by default,
whereas MLwiN and HLM use FML. This means that when you use a
particular statistical computer program, you must be sure to ascertain
which method of ML estimation is used by default; if you prefer the alter-
native method—for reasons of potentially increased precision or the
ability to conduct a wider array of hypothesis tests—be sure you are
obtaining the desired estimates.

4.3.3 Practical Advice about Estimation

Generalized least squares and maximum likelihood estimation are not
identical methods of estimation. They use different procedures to fit the
model and they allow us to make different assumptions about the distri-

butio
weigh
ing a
norm
of the
Althc
yield
estim
parin
2000,

- meth

Th
and !
tions
This -
gand
asym
And
hypo
to ac
the s
modt

GI
mod
Both
xtreg
restr
estin
write
a pa
anal
tions
undt

reali
cruc
the 1
at tk
anal
und
whic
ties.



> the
RML
eters
wn).
lvan-
344)
0 be
tion
reft
“the

the

lon?
the
s of
wder
lom
1 be
fect
test
dis-
1po-
be).
nts,
oth
ion
use
her
ult,
e a
‘ain
ter-
the

are

not
the
tri-

Doing Data Analysis with the Multilevel Model for Change 91

bution of the random effects. We obtain GLS estimates by minimizing a
weighted function of the residuals; we obtain ML estimates by maximiz-
ing a log-likelihood. Only ML estimation requires that the residuals be
normally distributed. These differences imply that GLS and ML estimates
of the same parameters in the same model using the same data may differ.
Although you might find this disturbing, we note that two methods can
yield unbiased estimates of the same population parameter but that the
estimates themselves can differ. While extensive simulation studies com-
paring methods are still underway (Draper, 1995; Browne & Draper,
2000), limited data-based comparisons suggest that, in practice, both
methods lead to similar conclusions (Kreft, de Leeuw & Kim, 1990).

There is one condition under which the correspondence between GLS
and ML methods is well known: if the usual normal distribution assump-
tions required for ML estimation hold, GLS estimates are ML estimates.”
This equivalence means that, if you are prepared to assume normality for
€and the (s, as we did in chapter 3, GLS estimates usually enjoy the same
asymptotic unbiasedness, efficiency, and normality that ML estimates do.
And since you must invoke normal theory assumptions to conduct
hypothesis tests anyway, most data analysts find them compelling and easy
to accept. In the remainder of the book, we therefore continue to invoke
the standard normal theory assumptions when specifying the multilevel
model for change.

GLS and ML are currently the dominant methods of fitting multilevel
models to data. They appear in a variety of guises in different packages.
Both FML and RML appear in HLM and SAS PROC MIXED. STATA
xtreg uses a GLS approach. MLwiN uses IGLS and an extension of it,
restricted IGLS (RIGLS), which is the GLS equivalent of RML. And new
estimation approaches appear each year. This suggests that whatever we
write about a particular method of estimation, or its implementation in
a particular package, will soon be out of date. But if your goal is data
analysis (not the development of estimation strategies), these modifica-
tions of the software are unproblematic. The educated user needs to
understand the statistical model, its assumptions, and how it represents
reality; the mathematical details of the method of estimation are less
crucial. That said, we have three reasons for recommending that you take
the time to become comfortable with both ML and GLS methods, at least
at the heuristic level presented here. First, you cannot conduct credible
analyses nor interpret parameter estimates without at least a conceptual
understanding how the model is fit. Second, under the assumptions for
which they were designed, these methods have decent statistical proper-
ties. Third, most new methods will ultimately descend from, or seek to
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rectify weaknesses in, these methods. In other words, the ML and GLS
methods are here to stay.

4.4 First Steps: Fitting Two Unconditional Multilevel
Models for Change

You’ve articulated your research questions, created a person-period data
set, conducted exploratory analyses, chosen an estimation approach, and
selected a software package. Although you might be tempted to begin by
fitting models that include your substantive predictors, we suggest that
you first fit the two simpler models presented in this section: the uncon-
ditional means model (section 4.4.1) and the unconditional growth model
(section 4.4.2). These unconditional models partition and quantify the
outcome variation in two important ways: first, across people without
regard to time (the unconditional means model), and second, across
both people and time (the unconditional growth model). Their results
allow you to establish: (1) whether there is systematic variation in your
outcome that is worth exploring; and (2) where that variation resides
(within or between people). They also provide two valuable baselines
against which you can evaluate the success of subsequent model build-
ing, as we discuss in section 4.4.3.

4.4.1 The Unconditional Means Model

The unconditional means model is the first model you should always fit.
Instead of describing change in the outcome over time, it simply describes
and partitions the outcome wvariation. Its hallmark is the absence of pre-
dictors at every level:

Yy = o+ &

(4.6a)
Toi =Yoo +&ois
where we assume, as usual, that:
&; ~ N(0,0}) and {5 ~ N(0, 07). (4.6b)

Notice that because there is only one level-2 residual, {y, we assume
univariate normality at level-2 (not bivariate normality, as we do when we
have two level-2 residuals).

The unconditional means model stipulates that, at level-1, the true
individual change trajectory for person ¢ is completely flat, sitting at ele-
vation 7. Because the trajectory lacks a slope parameter associated with
a temporal predictor, it cannot tilt. The single part of the level-2 sub-
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model stipulates that while these flat trajectories may differ in elevation,
their average elevation, across everyone in the population, is %y Any
interindividual variation in elevation is not linked to predictors. Even
though you hope that this model did not give rise to your sample data
—for it is not really about change at all—we recommend that you
always fit it first because it partitions the total variation in the outcome
meaningfully.

To understand how this variance partition operates, notice that flat
individual change trajectories are really just means. The true mean of Y
for individual i is m,; the true mean of Y across everyone in the popula-
tion is ¥%,. Borrowing terminology from analysis of variance, m, is the
person-specific mean and ¥y is the grand mean. The unconditional means
model postulates that the observed value of Y for individual ¢ on occasion
jis composed of deviations about these means. On occasion j, ¥, deviates
from individual 7’s true mean (7)) by &, The level-1 residual is thus a
“within-person” deviation that assesses the “distance” between Y, and 7,
Then, for person ¢, his or her true mean (7,,) deviates from the popula-
tion average true mean (%) by §y: This level-2 residual is thus a “between-
person” deviation that assesses the “distance” between 7y, and Y.

The variance components of equation 4.6b summarize the variability
in these deviations across everyone in the population: o7 is the “within-
person” variance, the pooled scatter of each person’s data around his or
her own mean; o3 is the “between-person” variance, the pooled scatter of
the person-specific means around the grand mean. The primary reason
we fit the unconditional means model is to estimate these variance com-
ponents, which assess the amount of outcome variation that exists at each
level. Associated hypothesis tests help determine whether there is suffi-
cient variation at that level to warrant further analysis. If a variance com-
ponent is zero, there is little point in trying to predict outcome variation
at that level—there is too little variation to explain. If a variance compo-
nent is non-zero, then there is some variation at that level that could
potentially be explained.

Model A of table 4.1 presents the results of fitting the unconditional
means model to the alcohol use data. Its one fixed effect, ¥4, estimates
the outcome’s grand mean across all occasions and individuals. Rejection
of its associated null hypothesis (p < .001) confirms that the average
alcohol consumption of the average adolescent between ages 14 and 16
is non-zero. Squaring 0.922 (which yields 0.85) to obtain its value on the
instrument’s original scale, we conclude that the average adolescent does
drink during these years, but not very much.

Next, examine the random effects, the major purpose for fitting this
model. The estimated within-person variance, G2, is 0.562; the estimated
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between-person variance, G3, is 0.564. Using the single parameter
hypothesis tests of section 3.6, we can reject both associated null hypothe-
ses at the .001 level. (Although these tests can mislead—(see section
3.6.2), we use them in table 4.1 because it turns out—for these data, at
least—that the conclusions are supported by the superior methods of
testing presented in section 4.6.) We conclude that the average adoles-
cent’s alcohol consumption varies over time and that adolescents differ
from each other in alcohol use. Because each variance component is sig-
nificantly different from 0, there is hope for linking both within-person
and between-person variation in alcohol use to predictors.

The unconditional means model serves another purpose: it allows us
to evaluate numerically the relative magnitude of the within-person and
between-person variance components. In this data set, they happen to be
almost equal. A useful statistic for quantifying their relative magnitude is
the intraclass correlation coefficient, p, which describes the proportion of
the total outcome variation that lies “between” people. Because the total
variation in Y'is just the sum of the within and between-person variance

components, the population intraclass correlation coefficient is:
2
Op
P="—3 (4.7)
Oy +0,

We can estimate p by substituting the two estimated variance components
from table 4.1 into equation (4.7). For these data, we find:

0.564
0.564 +0.562

p= 0.50,
indicating that half the total variation in alcohol use is attributable to dif-
ferences among adolescents.

The intraclass correlation coefficient has another role as well: it sum-
marizes the size of the residual autocorrelation in the composite uncon-
ditional means model. To understand how it does this, substitute the
level-2 submodel in equation 4.6a into its level-1 submodel to yield the
following composite unconditional means model:

Yij =%Yoo+ ({:o; +&; ) (4.8)

In this representation, Y} is composed of one fixed effect, ¥, and one
composite residual ({y,; + €;). Each person has a different composite resid-
ual on each occasion of measurement. But notice the difference in the
subscripts of the pieces of the composite residual: while the level-1 resid-
ual, &;, has two subscripts (i and j), the level-2 residual, o has only one
(7). Each person can have a different £; on each occasion, but has only
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one {, across every occasion. The repeated presence of §; in individual
i's composite residual links his or her composite residuals across occa-
sions. The error autocorrelation coefficient quantifies the magnitude of
this linkage; in the unconditional means model, the error autocorrela-
tion coefficient is the intraclass correlation coefficient. Thus, we estimate
that, for each person, the average correlation between any pair of com-
posite residuals—between occasions 1 and 2, or 2 and 3, or 1 and 3—is
0.50. This is quite large, and far from the zero residual autocorrelation
that an OLS analysis of these data would require. We discuss the intra-
class correlation coefficient further in chapter 7.

4.4.2 The Unconditional Growth Model

The next logical step is the introduction of predictor TIME into the level-
1 submodel. Based on the exploratory analyses of section 4.1, we posit a
linear change trajectory:

Yzj = n'()i ‘f‘ﬂ:],‘T]A/IE;j +€z’j
Toi =Yoo +Goi (4.9a)
T = Y10+ s

where we assume that

¢ i 0 0'2 O
g; ~N(0,02) and [g" J ~ N[[ H ¢ D (4.9b)
| & 0/low of

Because the only predictor in this model is 7IME, we call equation 4.9
the unconditional growth model.

Begin by comparing the unconditional growth model in equation 4.9a
to the unconditional means model in equation 4.6a. We facilitate this
comparison in table 4.2, which presents these models as well as several
others we will soon fit. Instead of postulating that individual #’s observed
score on occasion j, Y, deviates by &; from his or her person-specific
mean, it specifies that Y}; deviates by ¢; from his or her true change trajec-
tory. In other words, altering the level-1 specification alters what the level-
1 residuals represent. In addition, we now have a second part to the
level-2 submodel that depicts interindividual variation in the rates of
change (m;;). But because the model includes no substantive predictors,
each part of the level-2 submodel simply stipulates that an individual
growth parameter (either 7, or m;,) is the sum of an intercept (either ¥y
or %) and a level-2 residual (& or {,,).

An important consequence of altering the level-1 specification is that
the meaning of the variance components changes as well. The level-1
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Figure 4.3. Displaying the results of fitted multilevel models for change. Prototypical tra-
jectories from three models presented in table 4.1: Model B: the unconditional growth
model, Model C: the uncontrolled effect of COA, Model E: the effect of COA controlling
for PEER.

residual variance, ¢2, now summarizes the scatter of each person’s data
around his or her own linear change trajectory (not his or her person-specific
mean). The level-2 residual variances, o; and o% now summarize
between-person variability in initial status and rates of change. Estimat-
ing these variance components allows us to distinguish level-1 variation
from the two different kinds of level-2 variation and to determine
whether interindividual differences in change are due to interindividual
differences in true initial status or true rate of change.

Model B in table 4.1 presents the results of fitting the unconditional
growth model to the alcohol use data. The fixed effects, P4 and 71, esti-
mate the starting point and slope of the population average change tra-
jectory. We reject the null hypothesis for each (p <.001), estimating that
the average true change trajectory for ALCUSE has a non-zero intercept
of 0.651 and a non-zero slope of +0.271. Because there are no level-2 pre-
dictors, it is simple to plot this trajectory, as we do in the left panel of
figure 4.3. Although alcohol use for the average adolescent remains low,
we estimate that ALCUSE rises steadily between ages 14 and 16, from 0.65
to 1.19. We will soon determine whether these trajectories differ system-
: atically by parental alcoholism history or early peer alcohol use.

To assess whether there is hope for future analyses—whether there is
statistically significant variation in individual initial status or rate of

¥
I
i
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change that level-2 predictors could explain—examine the variance com-
ponents. By now, we hope you are beginning to see that variance com-
ponents are often more interesting than fixed effects. The level-1 residual
variance, o2, summarizes the average scatter of an individual’s observed
outcome values around his or her own true change trajectory. If the true
change trajectory is linear with age, the unconditional growth model will
do a better job of predicting the observed outcome data than the uncon-
ditional means model, resulting in smaller level-1 residuals and a smaller
level-1 residual variance. Comparing 62 in Model B to that of Model A,
we find a decline of .40 (from 0.562 to 0.337). We conclude that 40% of
the within-person variation in ALCUSE is systematically associated with
linear TIME. Because we can reject the null hypothesis for this variance
component in Model B, we also know that some important within-person
variation still remains at level-1 (p < .001). This suggests that it might be
profitable to introduce substantive predictors into the level-1 submodel.
We defer discussion of level-1 substantive predictors until section 5.3
because they must be time-varying (not time-invariant like the level-2 pre-
dictors in this data set).

The level-2 variance components quantify the amount of unpredicted
variation in the individual growth parameters. g; assesses the unpredicted
variability in true initial status (the scatter of the m, around ¥y); o}
assesses the unpredicted variability in true rates of change (the scatter of
the m; around ¥,). Because we reject each associated null hypothesis (at
$<.001 and p < .01, respectively), we conclude that there is non-zero vari-
ability in both true initial status and true rate of change. This suggests
that it worth trying to use level-2 predictors to explain heterogeneity in
each parameter. When we do so, these variance components—0.624 and
0.151—will provide benchmarks for quantifying the predictors’ effects.
We do not compare these variance components with estimates from the
unconditional means model because introduction of TIME into the
model changes their interpretation.

The population covariance of the level-2 residuals 0y,;, has an important
interpretation in the unconditional growth model. It not only assesses the
relationship between the level-2 residuals, it quantifies the population
covariance between true initial status and true change. This means that we
can assess whether adolescents who drink more at age 14 increase their
drinking more (or less) rapidly over time. Interpretation is easier if we re-
express the covariance as a correlation coefficient, dividing it by the
square root of the product of its associated variance components:
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We conclude that the relationship between true rate of change in
ALCUSE and its level at age 14 is negative and weak and, because we

cannot reject its associated null hypothesis, possibly zero.
We can learn more about the residuals in the unconditional growth
model by examining the composite specification of the multilevel model:

Y, = o, + T TIME; + (Lo + & . TIME, +€;,), (4.10)

Each person has j composite residuals, one per occasion of measure-
ment. The structure of the composite residual, which combines the
original level-1 and level-2 residuals (with {;; multiplied by TIME before
being bundled into the sum), provides the anticipated heterosce-
dasticity and autocorrelation that longitudinal data analysis may

demand.
First, we examine the variances of the composite residual. Mathemat-

ical results not presented here allow us to write the population variance
of the composite residual on the jth occasion of measurement as:
; =05 +0{TIME? + 20, TIME; + o;. (4.11)

Residual j

Substituting the estimated variance components from Model B in table
4.1 we have:

(0.624 +0.151TIME? - 0.136 TIME; +0.337).

Substituting values for TIME at ages 14 (TIME, = 0), 15 (TIME, = 1) and
16 (TIME; = 2), we find estimated composite residual variances of 0.961,
0.976, and 1.293, respectively. While not outrageously heteroscedastic,
especially for ages 14 and 15, this is beyond the bland homoscedasticity
we assume of residuals in cross-sectional data.

Further mathematical results not shown here allow us to write the auto-
correlation between composite residuals on occasions j and j as:

03 + 0o (TIME, + TIME )+ 6 Y TIME  TIME (412)

p Residual jResidual = 0_2 9 )
Residual j Residual j*

where the residual variances in the denominator are given by equation
(4.11). Substituting the estimated variance components and TIME into
equation 4.12 yields a residual autocorrelation of 0.57 between occasions
1 and 2, 0.64 between occasions 2 and 3, and 0.72 between occasions 1
and 3. We conclude that there is substantial autocorrelation between the
residuals across successive measurement occasions. We explore this

behavior further in chapter 7.
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4.4.3 Quantifying the Proportion of Outcome
Variation “Explained”

The two unconditional models assess whether there is potentially pre-
dictable outcome variation and, if so, where it resides. For these data, the
unconditional means model suggests roughly equal amounts of within-
person and between-person variation. The unconditional growth model
suggests that some of the within-person variation is attributable to linear
TIME and that there is between-person variation in both true initial status
and true rate of change that level-2 predictors might explain.

In multiple regression analysis, we quantify the proportion of outcome
variation that a model’s predictors “explain” using an R* (or adjusted R
statistic. In the multilevel model for change, definition of a similar sta-
tistic is trickier because total outcome variation is partitioned into several
variance components: here, 05, 0; and O}. As a result, statisticians have
yet to agree on appropriate summaries (Kreft & deLeeuw, 1998; Snidjers
& Bosker, 1994). Below, we present several j)seuda—}if2 statistics that quan-
tify how much outcome variation is “explained” by a multilevel model’s
predictors. First, we assess the proportion of total variation explained
using a statistic similar to the traditional R? statistic; second, we dissect
the level-1 and level-2 outcome variation using statistics similar to tradi-
tional adjusted-R* statistics. These pseudo-R® statistics can be useful data
analytic tools, as long as you construct and interpret them carefully.

An Overall Summary of Total Outcome
Variability Explained

In multiple regression, one simple way of computing a summary R* sta-
tistic is to square the sample correlation between observed and predicted
values of the outcome. The same approach can be used in the multilevel
model for change. All you need do is: (1) compute a predicted outcome
value for each person on each occasion of measurement; and (2) square
the sample correlation between observed and predicted values. The
resultant pseudo-R’ statistic assesses the proportion of total outcome
variation “explained” by the multilevel model’s specific combination of
predictors.

The bottom panel of table 4.1 presents this pseudo-R” statistic (labeled
R;;) for each model fit. We calculate these statistics by correlating pre-
dicted and observed values of ALCUSE for each person on each occasion
of measurement. For Model B, for example, the predicted values for indi-
vidual 7 on occasion j are: )7’?-,- = 0.651 + 0.271TIME;. As everyone in this
data set has the identical set of measurement occasions (0, 1, and 2),
Model B yields only three distinct predicted values:
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Y, =0.651+0.271(0) = 0.651

~

Y = 0.651+0.271(1) = 0.922

~

Yis =0.651+0.271(2) =1.193.

Across the entire person-period data set, the sample correlation between
these predicted values and the observed values is 0.21, which yields a
pseudo-R* statistic of .043. We conclude that 4.3% of the total variability
in ALCUSE is associated with linear time. As we add substantive predic-
tors to this model, we examine whether, and by how much, this pseudo-

R? statistic increases.

PseudoR* Statistics Computed from the Variance Components

Residual variation—that portion of the outcome variation unexplained by
a model’s predictors—provides another criterion for comparison. When
you fit a series of models, you hope that added predictors further explain
unexplained outcome variation, causing residual variation to decline.
The magnitude of this decline quantifies the improvement in fit. A large
decline suggests that the predictors make a big difference; a small, or
zero, decline suggests that they do not. To assess these declines on a
common scale, we compute the proportional reduction in residual variance
as we add predictors.

Each unconditional model yields residual variances that serve as yard-
sticks for comparison. The unconditional means model provides a base-
line estimate of 6% the unconditional growth model provides baseline
estimates of 03 and o3. Each leads to its own pseudo-R® statistic.

Let us begin by examining the decrease in within-person residual vari-
ance (0% between the unconditional means model and unconditional
growth model. As shown in table 4.1, our initial level-1 residual variance
estimate, 0.562, drops to .337 in the initial model for change. As the fun-
damental difference between these models is the introduction of TIME,
this pseudo-R” statistic assesses the proportion of within-person variation
“explained by time.” We compute the statistic as:

&2 (unconditional means model) - o7 (unconditional growth model)
62(unconditional means model) ’

Pseudo R? =
(4.1%)

For the alcohol use data, we have (562 — .337)/.562 = 0.400. We con-
clude that 40.0% of the within-person variation in ALCUSE is explained
by linear 7IME. The only way of reducing this variance component
further is to add time-varying predictors to the level-1 submodel. As this
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data set has no such predictors, ;7 remains unchanged in every subse-
quent model in table 4.].

We can use a similar approach to compute pseudo-R” statistics quanti-
fying the proportional reduction in level-2 residual variance on the addi-
tion of one or more level-2 predictors. Each level-2 residual variance
component has its own pseudo-R” statistic. A level-1 linear change model,
with two level-2 variance components, ¢ and o7, has two pseudo-Rs.
Baseline estimates of these components come from the unconditional
growth model. For any subsequent model, we compute a pseudo-R’ sta-
tistic as:

6;(unconditional growth model) - 67 (subsequent model)

Pseudo-R; = (4.14)

6¢(unconditional growth model)

Estimates of these statistics for each of the models in table 4.1 appear in
the bottom of the table. We will examine these proportional declines in
the next section when we evaluate the results of subsequent model fitting.

Before doing so, however, we close by identifying a potentially serious
flaw with the pseudo-R® statistics. Unlike traditional R’ statistics, which
will always be positive (or zero), some of these statistics can be negative!
In ordinary regression, additional predictors generally reduce the resid-
ual variance and increase R’. Even if every added predictor is worthless,
the residual variance will not change and R? will not change. In the mul-
tilevel model for change, additional predictors generally reduce variance
components and increase pseudo-R’ statistics. But because of explicit
links among the model’s several parts, you can find yourself in extreme
situations in which the addition of predictors increases the variance com-
ponents’ magnitude. This is most likely to happen when all, or most, of
the outcome variation is exclusively either within-individuals or between-
individuals. Then, a predictor added at one level reduces the residual
variance at that level but potentially increases the residual variance(s) at
the other level. This yields negative pseudo-R’ statistics, a disturbing
result to say the least. Kreft and de Leeuw (1998, pp. 117-118) and Sni-
jders and Bosker (1999, pp. 99-109) provide mathematical accounts of
this phenomenon, explicitly calling for caution when computing and
interpreting pseudo-R? statistics.

4.5 Practical Data Analytic Strategies for Model Building

A sound statistical model includes all necessary predictors and no unnec-
essary ones. But how do you separate the wheat from the chaff? We
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suggest you rely on a combination of substantive theory, research ques-
tions, and statistical evidence. Never let a computer select predictors
mechanically. The computer does not know your research questions nor
the literature upon which they rest. It cannot distinguish predictors of
direct substantive interest from those whose effects you want to control.

In this section, we describe one data analytic path through the alcohol
use data, distilling general principles from this specific case. We begin,
in section 4.5.1, by introducing the notion of a taxonmomy of statistical
models, a systematic path for addressing your research questions. In
section 4.5.2, we compare fitted models in the taxonomy, interpreting
parameter estimates, their associated tests and pseudo—RQ statistics. In
section 4.5.3, we demonstrate how to display analytic results graphically.
In section 4.5.4, we discuss alternative strategies for representing the
effects of predictors. In the remaining sections of the chapter, we use
these basic principles to introduce other important topics related to

model building.

4.5.1 A Taxonomy of Statistical Models

A taxonomy of statistical models is a systematic sequence of models that,
as a set, address your research questions. Each model in the taxonomy
extends a prior model in some sensible way; inspection and comparison
of its elements tell the story of predictors’ individual and joint effects.
Most data analysts iterate toward a meaningful path; good analysis does
not proceed in a rigidly predetermined order.

We suggest that you base decisions to enter, retain, and remove pre-
dictors on a combination of logic, theory, and prior research, supple-
mented by judicious hypothesis testing and comparison of model fit. At
the outset, you might examine the effect of each predictor individually.
You might then focus on predictors of primary interest (while including
others whose effects you want to control). As in regular regression, you
can add predictors singly or in groups and you can address issues of func-
tional form using interactions and transformations. As you develop the
taxonomy, you will progress toward a “final model” whose interpretation
addresses your research questions. We place quotes around this term to
emphasize that we believe no statistical model is ever final; it is simply a
placeholder until a better model is found.

When analyzing longitudinal data, be sure to capitalize on your intu-
ition and skills cultivated in the cross-sectional world. But longitudinal
analyses are more complex because they involve: (1) multiple level-2 out-
comes (the individual growth parameters), each of which can be related to
predictors; and (2) multiple kinds of effects, both fixed effects and variance
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components. A level-1 linear change submodel has two level-2 outcomes;
a more complex level-1 submodel may have more. The simplest strategy
is to initially include each level-2 predictor simultaneously in all level-2
submodels, but as we show below, they need not remain. Each individual
growth parameter can have its own predictors, and one goal of model
building is to identify which predictors are important for which level-1
parameters. So, too, although each level-2 submodel can contain fixed
and random effects, both are not necessarily required. Sometimes a
model with fewer random effects will provide a more parsimonious rep-
resentation and clearer substantive insights.

Before fitting models, take the time to distinguish between: (1) ques-
tion predictors, whose effects are of primary substantive interest; and, (2)
control predictors, whose effects you would like to remove. Substantive and
theoretical concerns usually support the classification. For the alcohol
use data, our classifications and analytic path will differ depending on
our research questions. If interest centers on parental influences, COA is
a question predictor and PEER a control. We would then evaluate the
effect of COA on its own and after control for PEER. But if interest centers
on peer influences, PEER is a question predictor and COA a control. We
would then evaluate the effect of PEER on its own and after control for
COA. Different classification schemes may lead to the same “final model,”
but they would arrive there via different paths. Sometimes, they lead
to different “final models,” each designed to answer its own research
questions.

In what follows, we assume that research interest centers on the effects
of parental alcoholism; PEERis a control. This allows us to adopt the ana-
lytic path illustrated in tables 4.1 and 4.2. Model C includes COA as a pre-
dictor of both initial status and change. Model D adds PEER to both
level-2 models. Model E is a simplification of Model D in which the effect
of COA on one of the individual growth parameters (the rate of change)
is removed. We defer discussion of Models F and G until section 4.5.4.

4.5.2 Interpreting Fitted Models

You need not interpret every model you fit, especially those designed to
guide interim decision making. When writing up findings for presenta-
tion and publication, we suggest that you identify a manageable subset
of models that, taken together, tells a persuasive story parsimoniously. At
a minimum, this includes the unconditional means model, the uncondi-
tional growth model, and a “final model.” You may also want to present
intermediate models that either provide important building blocks or tell
interesting stories in their own right.
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Columns 4-8 of table 4.1 present parameter estimates and associated
single parameter hypothesis tests for five models in our taxonomy. (We
discuss the last two models in section 4.5.4.) We recommend that you
always construct a table like this because it allows you to compare fitted
models systematically, describing what happens as you add and remove
predictors. Sequential inspection and comparison of estimated fixed
effects and variance components and their associated tests allows you to:
(1) ascertain whether, and how, the variability in initial status and rate
of change is gradually “explained”; and (2) identify which predictors
explain what variation. Tests on the fixed effects help identify the pre-
dictors to retain; tests on the variance components help assess whether
there is additional outcome variation left to predict. Integrating these
conclusions helps identify the sources of outcome variation available for
prediction and those predictors that are most effective in explaining that
variation. As we have discussed Models A and B in section 4.3, we turn

now to Model C.

Model C: The Uncontrolled Effects of COA

Model C includes COA as a predictor of both initial status and change.
Interpretation of its four fixed effects is straightforward: (1) the esti-
mated initial ALCUSE for the average child of non-alchoholic parents is
0.316 (p<.001); (2) the estimated differential in initial ALCUSE between
children of alchoholic and non-alchoholic parents is 0.743 (p < .001); (3)
the estimated rate of change in ALCUSE for an average child of non-
alchoholic parents is 0.293 (p < .001); and (4) the estimated differential
in the rate of change in ALCUSE between children of alchoholic and non-
alcoholic parents is indistinguishable from 0 (-0.049, ns). This model
provides uncontrolled answers to our research questions, suggesting that
while children of alchoholic parents initially drink more than children
of non-alchoholic parents, their rate of change in alcohol consumption
between ages 14 and 16 does not differ.

Next examine the variance components. The statistically significant
within-person variance component (63 for Model C is identical to that
of Model B, reinforcing the need to explore the effects of time-varying
predictors (if we had some). Stability like this is expected because we
added no additional level-1 predictors (although estimates can vary
because of uncertainties arising from iterative estimation). The level-2
variance components, however, do change: G5 declines by 21.8% from
Model B. Because it is still statistically significant, potentially explainable
residual variation in initial status remains. While &7 is unchanged, it,
too, is still statistically significant, suggesting the continued presence of
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potentially explainable residual variation in rates of change. These vari-
ance components are now called partial or conditional variances because
they quantify the interindividual differences in change that remain unex-
plained by the model’s predictors. We conclude that we should explore
the effects of a level-2 predictor like PEER because it might help explain
some of the level-2 residual variation.

Failure to find a relationship between COA and the rate of change
might lead some analysts to immediately remove this term. We resist this
temptation because COA is our focal question predictor and we want to
evaluate the full spectrum of its effects. If subsequent analyses continue
to suggest that this term be removed, we can always do so (as we do, in

Model E).

Model D: The Controlled Effects of COA

Model D evaluates the effects of COA on initial status and rates of change
in ALCUSE, controlling for the effects of PEER on initial status and rate
of change. Notice that the level-2 intercepts change substantially from
Model C: §y reverses sign, from +0.316 to —0.317; 7,, increases by 50%,
from 0.293 to 0.429. We expect changes like these when we add level-2
predictors to our model. This is because each level-2 intercept represents
the value of the associated individual growth pafameter—-——ﬂol» or 7,,—when
all predictors in each level-2 model are 0. In Model C, which includes
only one predictor, COA, the intercepts describe initial status and rate
of change for children of non-alchoholic parents. In Model D, which
includes two predictors, the intercepts describe initial status and rate of
change for a subset of children of non-alchoholic parents—those for
whom PEER also equals 0. Because we can reject the null hypothesis asso-
ciated with each parameter (p <.001), we might conclude that children
of non-alchoholic parents whose early peers do not drink have non-zero
levels of alcohol consumption themselves. But this conclusion is incor-
rect because the fitted intercept for initial status (—0.317) is negative sug-
gesting that the confidence interval for the parameter does not even
reach zero from below! As ALCUSE cannot be negative, this interval is
implausible. As in regular regression, fitted intercepts may be implausi-
ble even when they correspond to observable combinations of predictor
values. We discuss strategies for improving the interpretability of the
level-2 intercepts in section 4.5.4.

The remaining parameters in Model D have expected interpretations:
Yo and 79, describe the differential in® ALCUSE between children of
alchoholic and non-alchoholic parents controlling for the effects of
PEER and Y and 7, describe the differential in ALCUSE for a one-unit
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difference in PEER controlling for the effect of COA. Given our focus on
the effects of COA, we are more interested in the former effects than the
~latter. We therefore conclude that, controlling for the effects of PEER:
(1) the estimated differential in initial ALCUSE between children of
alchoholic and non-alchoholic parents is 0.579 (p < .001); and (2) the
estimated differential in the rate of change in ALCUSE between children
of alchoholic and non-alchoholic parents is indistinguishable from 0
(—0.014, ns). This model provides controlled answers to our research ques-
tions. As before, we conclude that children of alchoholic parents initially
drink more than children of non-alchoholic parents but their annual rate
of change in consumption between ages 14 and 16 is no different. The
magnitude of the early differential in ALCUSE is lower after PEER is con-
trolled. At least some of the differential initially found between the two
groups may be attributable to this predictor.

Next examine the associated variance components. Comparing Model
D to the unconditional growth model B, we find that while 6% remains
stable (as expected), 63 and 67 both decline. Taken together, PEER and
COA explain 61.4% of the variation in initial status and 7.9% of the vari-
ation in rates of change. Notice that we can compare these random effects
across models even though we cannot compare their fixed effects (7, and
710). This is because the random effects describe the residual variance of
the level-1 growth parameters—m,; or m,—which retain their meaning
across successive models even though the corresponding fixed effects (at
level-2) do not.

Rejection of the null hypotheses associated with 07 and o7 suggests that
there is further unpredicted variation in both initial status and rates of
change. If our data set had included other person-level predictors, we
would introduce them into the level-2 model to explain this variation.
But we have no such predictors. And hypothesis tests for the parameter
associated with the effect of COA on rate of change (94;) suggest that it
need not be included in Models C or D as a predictor of change. In com-
E parison to all other fixed effects, it is the only one whose null hypothe-
sis cannot be rejected. We conclude that even though COA is our focal
question predictor, we should remove this term to obtain a more parsi-
monious model.

Model E: A Tentative “Final Model” for the Controlled
Effects of COA

Model E includes PEER as a predictor of both initial status and change
but COA as a predictor of only initial status. For ease of exposition,
we tentatively label this our “final model,” but we hasten to add that our
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decision to temporarily stop here is based on many other analyses not
shown. In particular, we examined issues of functional form, including
nonlinearity and interactions, and found no evidence of either (beyond
that which we addressed by transforming the original outcome and pre-
dictor). We discuss issues like these in section 4.8 and in subsequent chap-
ters as we extend the multilevel model for change.

By now, you should be able to interpret the fixed effects in Model E
directly. Controlling for the effects of PEER, the estimated differential
in initial ALCUSE between children of alchoholic and non-alchoholic
parents is 0.571 (p <.001) and controlling for the effect of parental alco-
holism, for each 1-point difference in PEER: the average initial ALCUSE
is 0.695 higher and the average rate of change in ALCUSE is .151 lower.
We conclude that children of alchoholic parents drink more alcohol ini-
tially than children of non-alchoholic parents but their rate of change in
consumption between ages 14 and 16 is no different. We also conclude
that PEER is positively associated with early consumption but negatively
associated with the rate of change in consumption. Fourteen-year-olds
whose friends drink more tend to drink more at that age, but they have
a slower rate of increase in consumption over time.

Examining the random effects for Model E in comparison to Model D,
we find no differences in 6% &5 or 63. This confirms that we lose little by
eliminating the effect of COA on change. As before, rejection of all three
associated null hypotheses suggests the presence of unpredicted variation
that we might be able to explain with additional predictors. The popula-
tion covariance of the level-2 residuals, 0y;, summarizes the bivariate rela-
tionship between initial status and change, controlling for the specified
effects of COA and PEER; in other words, the partial covariance between
true initial status and change. Its estimate, —0.006, is even smaller than the
unconditional estimate of —0.068 in the initial model for change and its
associated hypothesis test indicates that it may well be zero in the popula-
tion. We conclude that, after accounting for the effects of PEER and COA,
initial status and rate of change in alcohol use are unrelated.

4.5.3 Displaying Prototypical Change Trajectories

Numerical summaries are just one way of describing the results of model
fitting. For longitudinal analyses, we find that graphs of fitted trajectories
for prototypical individuals are more powerful tools for communicating
results. These plots are especially helpful when fitted intercepts in level-
2 submodels refer to unlikely or implausible combinations of predictors,
as they do for Model E (as evidenced by the negative fitted intercept for
the initial status model). Some multilevel software packages provide these
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plots; if not, the calculations are simple and can be executed in any

spreadsheet or graphics program, as shown below.
Let us begin with Model C, which includes the effect of COA on both

initial status and change. From table 4.1, we have the following two level-
2 fitted models:
to; = 0.316+0.743COA;
my; =0.293 - 0.049COA,.
We can obtain fitted values for each group by substituting 0 and 1 for
COA:
Ty = 0.316+0.743(0) = 0.316
;= 0.293-0.049(0) = 0.293
Ty = 0.316+0.743(1) = 1.059

When COA; =1 {A
m; =0.293-0.049(1) = 0.244.

When COA; =0 {

The average child of a non-alchoholic parent has a fitted trajectory with an
intercept of 0.316 and a slope of 0.293; the average child of an alchoholic
parent has a fitted trajectorywith an intercept of 1.059 and a slope of 0.244.

We plot these fitted trajectories in the middle panel of figure 4.3.
Notice the dramatic difference in level and trivial (nonsignificant) dif-
ference in slope. Unlike the numeric representation of these effects in
table 4.1, the graph depicts both how much higher the ALCUSE level is
at each age among children of alchoholic parents and it emphasizes the
similarity in slopes.

We can also obtain fitted trajectories by working directly with the com-
posite specification. From Model C’s composite specification ¥, = 0.316
+0.743COA; + 0.293TIME; — 0.049 COA; x TIME;, we obtain the following
two trajectories by substituting in the two values of COA:

Y = 0.316+0.743(0)+0.293TIME, — 0.049(0)TIME,
When COA; =0 1 . !

Y, = 0.316+0.293TIME,
Y, = 0.316 +0.743 (1) + 0.293TIME, — 0.049 (1) TIME,

VVhen COAI = 1 “
¥, =1.059 +0.244TIME, .

By working with composite model directly, we obtain fitted trajectories
expressed as a function of TIME.

It is easy to extend these strategies to models with multiple predictors,
some of which may be continuous. Instead of obtaining a fitted function
for each predictor value, we recommend that you select prototypical values
of the predictors and derive fitted functions for combinations of these
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predictor values. Although you may be tempted to select many prototyp-
ical values for each predictor, we recommend that you limit yourself lest

the displays become crowded, precluding the very interpretation they
were intended to facilitate.

Prototypical values of predictors can be selected using one (or more)
of the following strategies:

® Choose substantively interesting values. This strategy is best for cate-
gorical predictors or those with intuitively appealing values (such
as 8, 12, and 16 for years of education in the United States).

Use a range of percentiles. For continuous predictors without
well-known values, consider using a range of percentiles (either
the 25th, 50th, and 75th or the 10th, 50th, and 90th).

Use the sample mean * .5 (or 1) standard deviation. Another strategy
useful for continuous predictors without well-known values.

Use the sample mean. If you just want to control for the impact of a
predictor rather than displaying its effect, set its value to the

sample mean, yielding the “average” fitted trajectory controlling
for that predictor.

Exposition is easier if you select whole number values (if the scale
permits) or easily communicated fractions (e.g., '/y, /o, and 7/,). When
using sample data to obtain prototypical values, be sure to do the calcu-
lations on the time-invariant predictors in the original person data set,
not the person-period data set. If you are interested in every substantive
predictor in a model, display fitted trajectories for all combinations of
prototypical predictor values. If you want to focus on certain predictors
while statistically controlling for others, eliminate clutter by setting the
values of these latter variables to their means.

The right panel of figure 4.3 presents fitted trajectories for four pro-
totypical adolescents derived from Model E. To construct this display we
needed to select prototypical values for PEER. Based on its standard devi-
ation of 0.726, we chose 0.655 and 1.381, values positioned a half a stan-
dard deviation from the sample mean (1.018). For ease of exposition, we
label these “low” and “high” PEER. Using the level-1/level-2 specification,
we calculate the fitted values as follows:

PEER COA Initial status (7, Rate of change (7))

Low No -0.314 + 0.695(0.655) + 0.571(0) = 0.142  0.425 — 0.151(0.655) = 0.326
Low Yes —0.314 + 0.695(0.655) + 0.571(1) =0.713  0.425 - 0.151(0.655) = 0.326
High No -0.314 + 0.695(1.381) + 0.571(0) = 0.646  0.425 ~ 0.151(1.381) = 0.216
High  Yes -0.314 + 0.695(1.381) + 0.571(1) = 1.217  0.425 - 0.151(1.381) = 0.216
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The fitted trajectories of alcohol use differ by both parental history of
alcoholism and peer alcohol use. At each level of PEER, the trajectory for
children of alchoholic parents is consistently above that of children of
non-alchoholic parents. But PEER also plays a role. Fourteen-year-olds
whose friends drink more tend to drink more at that age. Regardless of
parental history, the fitted change trajectory for high PEER is above that
of low PEER. But PEER has an inverse effect on the change in ALCUSE
over time. The slope of the prototypical change trajectory is about 33%
lower when PEER is high, regardless of parental history. We note that this
negative impact is not sufficient to counteract the positive early effect of
PEER. Despite the lower rates of change, the change trajectories when
PEER is high never approach, let alone fall below, that of adolescents
whose value of PEER is low.

4.5.4 Recentering Predictors to
Improve Interpretation

When introducing the level-1 submodel in chapter 2, we discussed the
interpretive benefits of recentering the predictor used to represent time.
Rather than entering time as a predictor in its raw form, we suggested
that you subtract a constant from each observed value, creating variables
like AGE-11 (in chapter 2), AGE-1 (in chapter 3), and AGE-14 (here in
chapter 4). The primary rationale for temporal recentering is that it sim-
plifies interpretation. If we subtract a constant from the temporal pre-
dictor, the intercept in the level-1 submodel, 7, refers to the true value
of Yat that particular age—11, 1, or 14. If the constant chosen represents
a study’s first wave of data collection, we can simplify interpretation even
further by referring to m; as individual 7’s true “initial status.”

We now extend the practice of rescaling to time-invariant predictors
like COA and PEER. To understand why we might want to recenter time-
invariant predictors, reconsider Model E in tables 4.1 and 4.2. When it
came to the level-2 fitted intercepts, 7o and 7y, interpretation was dif-
ficult because each represents the value of a level-1 individual growth
parameter—7; or m;,—when all predictors in the associated level-2 model
are 0. If a level-2 model includes many substantive predictors or if zero
is not a valid value for one or more of them, interpretation of its fitted
intercepts can be difficult. Although you can always construct prototypi-
cal change trajectories in addition to direct interpretation of parameters
we often find it easier to recenter the substantive predictors before analy-
sis so that direct interpretation of parameters is possible.

The easiest strategy for recentering a time-invariant predictor is to
subtract its sample mean from each observed value. When we center a
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predictor on its sample mean, the level-2 fitted intercepts represent the
average fitted values of initial status (or rate of change). We can also recen-
ter a time-invariant predictor by subtracting another meaningful value—
for example, 12 would be a suitable centering constant for a predictor
representing years of education among U.S. residents; 100 may be a suit-
able centering constant for scores on an IQ) test. Recentering works best
when the centering constant is substantively meaningful—either because
it has intuitive meaning for those familiar with the predictor or because
it corresponds to the sample mean. Recentering can be equally benefi-
cial for continuous and dichotomous predictors.

Models F and G in tables 4.1 and 4.2 demonstrate what happens when
we center the time-invariant predictors PEER and COA on their sample
means. Each of these models is equivalent to Model E, our tentative
“final” model, in that all include the effect of COA on initial status and
the effect of PEER on both initial status and rate of change. The differ-
ence between models is that before fitting Model F, we centered PEER
on its sample mean of 1.018 and before fitting Model G, we also centered
COA on its sample mean of .451. Some software packages (e.g., HLM)
allow you to center predictors by toggling a switch on an interactive
menu; others (e.g., MLwiN and SAS PROC MIXED) require you to create
a new variable using computer code (e.g., by computing CPEER = PEER
—1.018). Our only word of caution is that you should compute the sample
mean in the person-level data set. Otherwise, you may end up giving greater
weight to individuals who happen to have more waves of data (unless the
person-period data set is fully balanced, as it is here).

To evaluate empirically how recentering affects interpretation,
compare the last three columns of table 4.1 and notice what remains the
same and what changes. The parameter estimates for COA and PEER
remain identical, regardless of recentering. This means that conclusions
about the effects of predictors like PEER and COA are unaffected: 7,
remains at 0.571, ¥,, remains at 0.695, and 7, remains at —0.151 (as do
their standard errors). Also notice that each of the variance components
remains unchanged. This demonstrates that our conclusions about the
variance components for the level-1 and level-2 residuals are also unaf-
fected by recentering level-2 predictors.

What does differ across Models E, F and G are the parameter estimates
(and standard errors) for the intercepts in each level-2 submodel. These
estimates change because they represent different parameters:

¢ If neither PEER nor COA are centered (Model E), the intercepts
represent a child of non-alchoholic parents whose peers at age 14
were totally abstinent (PEER = 0 and COA = 0).
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* If PEER is centered and COA is not (Model F), the intercepts
represent a child of non-alchoholic parents with an average value
of PEER (PEER = 1.018 and COA = 0).

* If both PEER and COA are centered (Model G), the intercepts rep-
resent an average study participant—someone with average values
of PEER and COA (PEER=1.018 and COA = 0.451).

Of course, this last individual does not really exist because only two
values of COA are possible: 0 and 1. Conceptually, though, the notion of
an average study participant has great intuitive appeal.

When we center PEER and not COA in Model F, the level-2 intercepts
describe an “average” child of non-alchoholic parents: 7y, estimates his
or her true initial status (0.394, p < .001) and ¥, estimates his or her
true rate of change (0.271, p < .001). Notice that the latter estimate is
unchanged from Model B, the unconditional growth model. When we go
further and center both PEER and COA in Model G, each level-2 inter-
cept is numerically identical to the corresponding level-2 intercept in the
unconditional growth model (B).?

Given that Models E, F, and G are substantively equivalent, which
do we prefer? The advantage of Model G, in which both PEER and
COA are centered, is that its level-2 intercepts are comparable to those
in the unconditional growth model (B). Because of this comparability,
many researchers routinely center all time-invariant predictors—even
dichotomies—around their grand means so that the parameter estimates
that result from the inclusion of additional predictors hardly change.
Model E has a different advantage: because each predictor retains its
original scale, we need not remember which predictors are centered and
which are not. The predictor identified is the predictor included.

But both of these preferences are context free; they do not reflect
our specific research questions. When we consider not just algebra but
research interests—which here focus on parental alcoholism—we find
ourselves preferring Model F. We base this decision on the easy inter-
pretability of parameters for the dichotomous predictor COA. Not only
is zero a valid value, it is an especially meaningful one (it represents chil-
dren of non-alchoholic parents). We therefore see little need to center
its values to yield consistency in parameter estimates with the uncondi-
tional growth model. When it comes to PEER, however, we have a differ-
ent preference. Because it is of less substantive interest—we view it as a
control predictor—we see no need not to center its values. Our goal is to
evaluate the effects of COA controlling for PEER. By centering PEER at
its mean, we achieve the goal of statistical control and interpretations of
the level-2 intercepts are reasonable and credible. For the remainder of
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this chapter, we therefore adopt Model F as our “final model.” (We con-

tinue to use quotes to emphasize that even this model might be set aside
in favor of an alternative in subsequent analyses.)

4.6 Comparing Models Using Deviance Statistics

In developing the taxonomy in tables 4.1 and 4.2, we tested hypotheses
on fixed effects and variance components using the single parameter
approach of chapter 3. This testing facilitated our decision making and
helped us determine whether we should render a simpler model more
complex (as when moving from Model B to C) or a more complex model
simpler (as when moving from Model D to E). As noted in section 3.6,
however, statisticians disagree as to the nature, form, and effectiveness of
these tests. The disagreement is so strong that some multilevel software
packages do not routinely output these tests, especially for variance com-
ponents. We now introduce an alternative method of inference—based
on the deviance statistic—which statisticians seem to prefer. The major
advantages of this approach are that it: (1) has superior statistical prop-
erties; (2) permits composite tests on several parameters simultaneously;
and (3) conserves the reservoir of Type I error (the probability of incor-
rectly rejecting Hy when it is true).

4.6.1 The Deviance Statistic

The easiest way of understanding the deviance statistic is to return to
the principles of maximum likelihood estimation. As described in section
3.4, we obtain ML estimates by maximizing numerically the log-likelihood
function, the logarithm of the joint likelihood of observing all the sample
data actually observed. The log-likelihood function, which depends on
the hypothesized model and its assumptions, contains all the unknown
parameters (the 7’s and ¢’s) and the sample data. ML estimates are those
values of the unknown parameters (the 7’s and ¢’s) that maximize the
log-likelihood.

As a by-product of ML estimation, the computer determines the mag-
nitude of the log-likelihood function for this particular combination of
observed data and parameter estimates. Statisticians call this number the
sample log-likelihood statistic, often abbreviated as LL. Every program that
uses ML. methods outputs the LL statistic (or a transformation of it). In
general, if you fit several competing models to the same data, the larger
the LL statistic, the better the fit. This means that if the models you
compare vield negative LL statistics, those that are smaller in absolute
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value—i.e., closer to 0—fit better. (We state this obvious point explicitly
as there has been some confusion in the literature about this issue.)

The deviance statistic compares log-likelihood statistics for two models:
(1) the current model, the model just fit; and (2) a saturated model, a more
general model that fits the sample data perfectly. For reasons explained
below, deviance is defined as this difference multiplied by —2:

DeVi'dnce = ‘Q[Lqurmm model — IJLRatuml.cd mnd(:i]‘ (4 1 5)

For a given set of data, deviance quantifies how much worse the current
model is in comparison to the best possible model. A model with a small
deviance statistic is nearly as good as any you can fit; a model with a
large deviance statistic is much worse. Although the deviance statistic may
appear unfamiliar, you have used it many times in regression analysis,

where it is identical to the residual sum of squares, (Z(Yl —)},)>)

=1

To calculate a deviance statistic, you need the log-likelihood statistic
for the saturated model. Fortunately, in the case of the multilevel model
for change, this is easy because a saturated model contains as many
parameters as necessary to achieve a perfect fit, reproducing every
observed outcome value in the person-period data set. This means that
the maximum of its likelihood function—the probability that it will per-
fectly reproduce the sample data—is 1. As the logarithm of 1 is 0, the log-
likelihood statistic for the saturated model is 0. We can therefore drop
the second term on the right-hand side of equation 4.15, defining the
deviance statistic for the multilevel model for change as:

Deviance = _;QLLc1xrrent.111<)clcl- (416)

Because the deviance statistic is just —2 times the sample log-likelihood,
many statisticians (and software packages) label it —2logl. or —2LL. As
befits its name, we prefer models with smaller values of deviance.

The multiplication by -2 invoked during the transition from log-
likelihood to deviance is more than cosmetic. Under standard normal
theory assumptions, the difference in deviance statistics between a pair of
nested models fit to the identical set of data has a known distribution. This
allows us to test hypotheses about differences in fit between competing models
by comparing deviance statistics. The resultant likelihood ratio testsare so named
because a difference of logarithms is equal to the logarithm of a ratio.

4.6.2 When and How Can You Compare
Deviance Statistics?

Deviance statistics for the seven models fit to the alcohol use data appear
in table 4.1. They range from a high of 670.16 for Model A to a low of
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588.69 for Model D. We caution that you cannot directly interpret their
magnitude (or sign). (Also notice that the deviance statistics for Models
E, F, and G are identical. Centering one or more level-2 predictors has
absolutely no effect on this statistic.)

To compare deviance statistics for two models, the models must meet
certain criteria. At a minimum: (1) each must be estimated using the
identical data; and (2) one must be nested within the other. The con-
stancy of data criterion requires that you eliminate any record in the
person-period data set that is missing for any variable in either model.
A difference of even one record invalidates the comparison. The nesting
criterion requires that you can specify one model by placing constraints
on the parameters in the other. The most common constraint is to set
one or more parameters to 0. A “reduced” model is nested within a
“full” model if every parameter in the former also appears in the
latter.

When comparing multilevel models for change, you must attend to
a third issue before comparing deviance statistics. Because these models
involve two types of parameters—fixed effects (the ¥’s) and variance com-
ponents (the ¢’s)—there are three distinct ways in which full and reduced
models can differ: in their fixed effects, in their variance components,
or in some combination of each. Depending upon the method of esti-
mation—full or restricted ML—only certain types of differences can be
tested. This limitation stems from principles underlying the estimation
methods. Under FML (and IGLS), we maximize the likelihood of the
sample data; under RML (and RIGLS), we maximize the likelihood of
the sample residuals. As a result, an FML deviance statistic describes the
fit of the entire model (both fixed and random effects), but a RML
deviance statistic describes the fit of only its stochastic portion of the
model (because, during estimation, its fixed effects are assumed
“known”). This means that if you have applied FML estimation, as we
have here, you can use deviance statistics to test hypotheses about any
combination of parameters, fixed effects, or variance components. But if
you have used RML to fit the model, you can use deviance statistics to
test hypotheses only about variance components. Because RML is the
default method in some multilevel programs (e.g., SAS PROC MIXED),
caution is advised. Before using deviance statistics to test hypotheses, be
sure you are clear about which method of estimation you have used.

Having fit a pair of models that meets these conditions, conducting
tests is easy. Under the null hypothesis that the specified constraints hold,
the difference in deviance statistics between a full and reduced model
(often called “delta deviance” or AD) is distributed asymptotically as a x*
distribution with degrees of freedom (d.f.) equal to the number of inde-
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pendent constraints imposed. If the models differ by one parameter, you
have one degree of freedom for the test; if they differ by three parame-
ters, you have three. As with any hypothesis test, you compare AD to a
cenitical value, appropriate for that number of degrees of freedom, reject-
ing H, when the test statistic is large.*

4.6.3 Implementing Deviance-Based Hypothesis Tests

Because the models in table 4.1 were fit using Full IGLS, we can use
deviance statistics to compare their goodness-of-fit, whether they differ
by only fixed effects (as do Models B, C, D, and E, F, G) or both fixed
effects and variance components (as does Model A in comparison to all
others). Before comparing two models, you must: (1) ensure that the data
set has remained the same across models (it does); (2) establish that the
former is nested within the latter; and (3) compute the number of addi-
tional constraints imposed.

Begin with the two unconditional models. We obtain multilevel Model
A from Model B by invoking three independent constraints: ¥, =0, 07 =
0, and oy, = 0. The difference in deviance statistics, (670.16 — 636.61) =
33.55, far exceeds 16.27, the .001 critical value of a )(2 distribution on 3
d.f., allowing us to reject the null hypothesis at the p < .001 level that all
three parameters are simultaneously 0. We conclude that the uncondi-
tional growth model provides a better fit than the unconditional means
model (a conclusion already suggested by the single parameter tests for
each parameter).

Deviance-based tests are especially useful for comparing what happens
when we simultaneously add one (or more) predictor(s) to each level-2
submodel. As we move from Model B to Model C, we add COA as a pre-
dictor of both initial status and rate of change. Noting that we can obtain
the former by invoking two independent constraints on the latter (setting
both %, and ¥, to 0) we compare the difference in deviance statistics of
(636.61 — 621.20) = 15.41 to a ¥* distribution on 2 d.f.. As this exceeds
the .001 critical value (13.82), we reject the null hypothesis that both ¥,
and 7, are simultaneously 0. (We ultimately set %, to 0 because we are
unable to reject its single parameter hypothesis test in Model D. Com-
paring Models D and E, which differ by only this term, we find a trivial
difference in deviance of 0.01 on 1 d.f).

You can also use deviance-based tests to compare nested models with
identical fixed effects and different random effects. Although the strat-
egy is the same, we raise this topic explicitly for two reasons: (1) if you
use restricted methods of estimation (RML or RIGLS), these are the only
types of deviance comparisons you can make; and (2) they address an
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important question we have yet to consider: Must the complete set of
random effects appear in every multilevel model?

In every model considered so far, the level-2 submodel for each indi-
vidual growth parameter (7, and 7,;) has included a residual (¢,; or {,).
This practice leads to the addition of tAree variance components: ol 0%,
and oy,. Must all three always appear? Might we sometimes prefer a more
parsimonious model? We can address these questions by considering the
consequences of removing a random effect. To concretize the discussion,
consider the following extension of Model F, which eliminates the second
level-2 residual, {;:

K; =Ty, +7Z,,TIME1] +81]
Toi = Yoo +Yo1COA; + ¥ eCPEER; + &
7Ty = Yo+ Y19CPEER;,

and g, ~ N (0, 6% and §,; ~ N (0, 7). In the parlance of multilevel mod-
eling, we have “fixed” the individual growth rates, preventing them from
varying randomly across individuals (although we allow them to be
related to CPEER). Removing this one level-2 residual (remember, resid-
uals are not parameters) eliminates two variance components (which are
parameters): 0% and oy,.

Because the fixed effects in this reduced model are identical to those
in Model F, we can test the joint null hypothesis that both o7 and oy, are
0 by comparing deviance statistics. When we fit the reduced model to
data, we obtain a deviance statistic of 606.47 (not shown in table 4.1).
Comparing this to 588.70 (the deviance for Model F) yields a difference
of 18.77. As this exceeds the .001 critical value of a ¥* distribution with 2
d.f. (13.82), we reject the null hypothesis. We conclude that there is resid-
ual variability in the annual rate of change in ALCUSE that could poten-
tially be explained by other level-2 predictors and that we should retain
the associated random effects in our model.

4.6.4 AIC and BIC Statistics: Comparing Nonnested
Models Using Information Criteria

You can test many important hypotheses by comparing deviance statistics
for pairs of nested models. But as you become a more proficient data
analyst, you may occasionally want to compare pairs of models that are
not nested. You are particularly likely to find yourself in this situation
when you would like to select between alternative models that involve dif-
ferent sets of predictors.

Suppose you wanted to identify which subset of interrelated predictors
best captures the effect of a single underlying construct. You might, for
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example, want to control statistically for the effects of parental socioeco-
nomic status (SES) on a child outcome, yet you might be unsure which
combination of many possible SES measures—education, occupation, or
income (either maternal or paternal)—to use. Although you could use
principal components analysis to construct summary measures, you
might also want to compare the fit of alternative models with different
subsets of predictors. One model might use only paternal measures;
another might use only maternal measures; still another might be
restricted only to income indicators, but for both parents. As these
models would not be nested (you cannot recreate one by placing con-
straints on parameters in another), you cannot compare their fit using
deviance statistics.

We now introduce two ad hoc criteria that you can use to compare the
relative goodness-of-fit of such models: the Akaike Information Criterion
(AIC; Akaike, 1974) and the Bayesian Information Criterion (BIC;
Schwarz, 1978). Like the deviance statistic, each is based on the log-
likelihood statistic. But instead of using the LL itself, each “penalizes”
(i.e., decreases) the LL according to pre-specified criteria. The AIC
penalty is based upon the number of model parameters. This is because
adding parameters—even if they have no effect—will increase the LL sta-
tustic, thereby decreasing the deviance statistic. The BIC goes further. Its
penalty is based not just upon the number of parameters, but also on the
sample size. In larger samples, you will need a larger improvement before
you prefer a more complex model to a simpler one. In each case, the
result is multiplied by —2 so that the information criterion’s scale is
roughly equivalent to that of the deviance statistic. (Note that the number
of parameters you consider in the calculations differs under full and
restricted ML methods.) Under full ML, both fixed effects and variance
components are relevant. Under restricted ML, as you would expect, only
the variance component parameters are relevant.

Formally, we write:

Information : y
criterion = —2[ LL — (scale factor)(number of model parameters)]

= Deviance + 2(scale factor) (number of model parameters).

For the AIC, the scale factor is 1; for the BIC, it is half the log of the
sample size. This latter definition leaves room for some ambiguity, as it
is not clear whether the sample size should be the number of individu-
als under study or the number of records in the person-period data set.
In the face of this ambiguity, Raftery (1995) recommends the former for-
mulation, which we adopt here.
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AlICs and BICs can be compared for any pair of models, regardless of
whether one is nested within another, as long as both are fit to the identi-
cal set of data. The model with the smaller information criterion (either
AIC or BIC) fits “better.” As each successive model in table 4.1 is nested
within a previous one, informal comparisons like these are unnecessary.
But to illustrate how to use these criteria, let us compare Models B and
C. Model B involves six parameters (two fixed effects and four variance
components); Model C involves eight parameters (two additional fixed
effects). In this sample of 82, we find that Model B has an AIC statistic
of 636.6 + 2(1) (6) = 648.6 and an BIC of 636.6 + 2(In(82) /2) (6) = 663.0,
while Model C has an AIC statistic of 621.2 + 2(1)(8) = 637.2 and an BIC
of 621.2 + 2(In(82) /2) (8) = 656.5. Both criteria suggest that C is prefer-
able to B, a conclusion we already reached via comparison of deviance
statistics.

Comparison of AIC and BIC statistics is an “art based on science.”
Unlike the objective standard of the y* distribution that we use to
compare deviance statistics, there are few standards for comparing infor-
mation criteria. While large differences suggest that the model with the
smaller value is preferable, smaller differences are difficult to evaluate.
Moreover, statisticians have yet to agree on what differences are “small”
or “large.” In his excellent review extolling the virtues of BIC, Raftery
(1995) declares the evidence associated with a difference of 0-2 to be
“weak,” 2-6 to be “positive,” 6~10 to be “strong,” and over 10 to be “very
strong.” But before concluding that information criteria provide a
panacea for model selection, consider that Gelman and Rubin (1995)
declared these statistics to be “off-target and only by serendipity manage
to hit the target in special circumstances” (p. 165). We therefore offer a
cautious recommendation to examine information criteria and to use
them for model comparison only when more traditional methods cannot
be applied.

4.7 Using Wald Statistics to Test Composite Hypotheses
About Fixed Effects

Deviance-based comparisons are not the only method of testing com-
posite hypotheses. We now introduce the Wald statistic, a generalization
of the “parameter estimate divided by its standard error” strategy for
testing hypotheses. The major advantage of the Wald statistic is its gen-
erality: you can test composite hypotheses about multiple effects regard-
less of the method of estimation used. This means that if you use
restricted methods of estimation, which prevent you from using deviance-
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based tests to compare models with different fixed effects, you still have
a means of testing composite hypotheses about sets of fixed effects.

Suppose, for example, you wanted to test whether the entire true
change trajectory for a particular type of adolescent—say, a child of non-
alchoholic parents with an average value of PEER—differs from a “null”
trajectory (one with zero intercept and zero slope). This is tantamount
to asking whether the average child of non-alchoholic parents drinks no
alcohol at age 14 and remains abstinent over time.

To test this composite hypothesis, you must first figure out the entire
set of parameters involved. This is easier if you start with a model’s com-
posite representation, such as Model F: Y; = %, + %, COA, + ¥ CPEER, +
Yo TIME; + %, CPEER; X TIME; + [{o; + §,TIME; + €;]. To identify param-
eters, simply derive the true change trajectory for the focal group, here
children of non-alchoholic parents with an average value of CPEER. Sub-
stituting COA = 0 and CPEER = 0 we have: E[Y;| COA =0, CPEER = 0] =
Yoo + ¥%01(0) + %2(0) + Yo TIME; + 715(0) X TIME; = ¥y + Yo TIME,, where
the expectation notation, E[. . .], indicates that this is the average popula-
tion trajectory for the entire COA = 0, CPEER = 0 subgroup. Taking expec-
tations eliminates the level-1 and level-2 residuals, because—like all
residuals—they average to zero. To test whether this trajectory differs
from the null trajectory in the population, we formulate the composite
null hypothesis:

H(;:')/()() =0and '}/]() =0. (417)

This joint hypothesis is a composite statement about an entire popula-
tion trajectory, not a series of separate independent statements about
each parameter.

We now restate the null hypothesis in a generic form known as a general
linear hypothesis. In this representation, each of the model’s fixed effects
1s multiplied by a judiciously chosen constant (an integer, a decimal, a
fraction, or zero) and then the sum of these products is equated to
another constant, usually zero. This “weighted linear combination” of
parameters and constants is called a linear contrast. Because Model F
includes five fixed effects—even though only two are under scrutiny here
—we restate equation 4.17 as the following general linear hypothesis:

Ho:1700 + 0701 +0Y02 + 07390 +0¥12 =0 (4.18)
0%00 +0Y01 +0%02 + 1710 + 0712 = 0. |
Although each equation includes all five fixed effects, the carefully

chosen multiplying constants (the weights) guarantee that only the two
focal parameters, %, and %,, remain viable in the statement. While this



124 Applied Longitudinal Data Analysis

may seem like little more than an excessively parameterized reshuffling
of symbols, its structure allows us to invoke a widely used testing strategy.

Most software programs require you to express a general linear
hypotheses in matrix notation. This allows decomposition of the hypoth-
esis into two distinct parts: (1) a matrix of multiplying constants (e.g., the
0’s and 1’s in equation 4.18); and (2) a vector of parameters (e.g., the
y’s). To construct the matrix of multiplying constants, commonly labeled
a constraints or contrast matrix, C, simply lift the numbers in the general
linear hypothesis equation en bloc and array them in the same order.
From equation 4.18 we have:

1 0 0 0 O
C= .
0 0010
To form the vector of fixed effects, commonly labeled the parameter vector,

or ¥, lift the parameters in the general linear hypothesis en bloc and array
them in the same order as well:

Y={Yoo Yo Yoo Yio Yl

The general linear hypothesis is formed from the product of the € matrix
and the transposed 7y vector:

Yoo
Yo

H‘l 0O 0 0 O _0
O-O 0 0 1 O ,},02—'07
Y10
LY12 ]

which can be written generically as: H,: Cy” = 0. For a given model, the
elements of C will change from hypothesis to hypothesis but the elements
of ywill remain the same.

Any general linear hypothesis that can be written in this Cy" = 0 form
can be tested using a Wald statistic. Instead of comparing a parameter
estimate to its standard error, the Wald statistic compares the square of
the weighted linear combination of parameters to its estimated variance.
As the variance of an estimate is the square of its standard error, the Wald
statistic then resembles a squared zstatistic. (Indeed, if you use a Wald
statistic to test a null hypothesis about a single fixed effect, Wreduces to
the square of the usual zstatistic.) Under the null hypothesis and usual
normal theory assumptions,. W has a y* distribution with degrees of
freedom equal to the number of rows in the € matrix (because the
number of rows determines the number of independent constraints the
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null hypothesis invokes). For this hypothesis, we obtain a critical value of
51.01 on 2 d.f, allowing us to reject the composite null hypothesis in
equation 4.18 at the .001 level.

General linear hypotheses can address even more complex questions
about change over time. For example, when we examined the OLS esti-
mated change trajectories in figure 4.2, we noticed that among children
of non-alchoholic parents, those with low values of CPEER tended to have
a lower initial status and steeper slopes than those with high values of
CPEER. We might therefore ask whether the former group “catches up”
to the latter. This is a question about the “vertical” separation between
these two groups” true change trajectories at some later age, say 16.

To conduct such a test, you must once again first figure out the specific
parameters under scrutiny. As before, we do so by substituting appropri-
ate predictor values into the fitted model. Setting COA to 0 (for the chil-
dren of non-alchoholic parents) and now selecting —.363 and +.363 as the
low and high values of CPEER (because they correspond to .5 standard
deviations on either side of the centered variable’s mean of 0) we have:

E[Y,|COA = 0, CPEER = low] = Yoo + Y01(0) + Yoo (—.363) + v 1, TIME;
+¥12(—.363) X TIME,;
= (Yoo —.363Y02) + (Y10 —.363y1:)TIME);
E[Y,JCOA = 0, CPEER = high] = Yoo + Yoi(0)+ Y02(.363) + v, 0 TIME;
+712(.363) X TIME;
= (Yoo +.363Y02) + (Y10 +.363y12 ) TIME .
The predicted ALCUSE levels at age 16 are found by substituting TIME =
(16 — 14) = 2 into these equations:
E[Y;|COA = 0, CPEER = low] = Yoo —.363Y 0 + 210 — 2(.363)Y12
E[Y;|COA = 0, CPEER = high] = o0 +.363Y9 + 2y10 + 2(.363)715.

How do we express the “catching up” hypothesis? If the low CPEER
group “catches up,” the expected values of the two groups should be iden-
tical at age 16. We therefore derive the composite null hypothesis by
equating their expected values:

}’()() - .363'}/()2 + 27/10 e 2(?)63)'}/12 = ’)/()() + 363’}’(}2 + 27/[0 + 2(363)')/12

Simplifying yields the following constraint ¥y + 2%, = 0, which we can be
re-expressed as:

H)ZO'}/Q() + O'}’m + 1'}/()2 + O'Y]() + 2')/12 = 0. (419)

Notice that unlike the composite null hypothesis in equation 4.18, which
required two equations, this composite null hypothesis requires just one.
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This is a result of a reduction in the number of independent constraints.
Because the first hypothesis simultaneously tested two independent state-
ments—one about %, and the other about ¥,,—it required two separate
equations. Because this hypothesis is just a single statement—albeit about
two parameters, ¥y and ys—it requires just one. This reduction reduces
the dimensions of the contrast matrix, C.

We next express the composite null hypothesis in matrix form. The
parameter vector, % remains unchanged from equation 4.18 because the
model has not changed. But because the null hypothesis has changed,
the constraint matrix must change as well. Stripping off the numerical
constants in equation 4.19 we have C=[0 0 1 0 2].

As expected, C is just a single row reflecting its single constraint. The
composite null hypothesis is:

Yoo

Yo
Hye[0 0 1 0 2fye|=[0]
V1o
Y12 ]

which has the requisite Cy’ = 0 algebraic form. Conducting this test we
find that we cannot reject the null hypothesis at any conventional level
of significance (y* = 1.44, d.f. = 1). We conclude that these average true
change trajectories converge by age 16. In other words, the alcohol
consumption of children of non-alchoholic parents with low CPEER
does indeed catch up to the alcohol consumption of children of non-
alchoholic parents with high CPEER.

Because many research questions can be stated in this form, general
linear hypothesis testing is a powerful and flexible technique. It is par-
ticularly useful for conducting omnibus tests of several level-2 predictors so
that you can assess whether sets of predictors make a difference as a group.
If we represent a nominal or ordinal predictor using a set of indicator
variables, we could use this approach to test their overall effect and eval-
uate pair-wise comparisons among subgroups.

Although Wald statistics can be used to test hypotheses about variance
components, we suggest that you do not do so. The small-sample dis-
tribution theory necessary for these tests is poorly developed. It is only
in very large samples—that is, asymptotically—that the distribution of a
W statistic involving variance components converges on a y* distribution
as your sample size tends to infinity. We therefore do not recommend
deviance-based comparisons for composite null hypotheses about vari-
ance components.
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4.8 Evaluating the Tenability of a Model’s Assumptions

Whenever you fit a statistical model, you invoke assumptions. When you
use ML methods to fit a linear regression model, for example, you assume
that the errors are independent and normally distributed with constant
variance. Assumptions allow you to move forward, estimate parameters,
interpret results, and test hypotheses. But the validity of your conclusions
rests on your assumptions’ tenability. Fitting a model with untenable
assumptions is as senseless as fitting a model to data that are knowingly
flawed. Violations lead to biased estimates, incorrect standard errors, and
erroneous inferences.

When you fit a multilevel model for change, you also invoke assump-
tions. And because the model is more complex, its assumptions are more
complex as well, involving both structural and stochastic features at each
level. The structural specification embodies assumptions about the true
functional form of the relationship between outcome and predictors.
At level-1, you specify the shape of the hypothesized individual change
trajectory, declaring it to be linear (as we have assumed so far) or non-
linear (as we assume in chapter 6). At level-2, you specify the relationship
between each individual growth parameter and time-invariant predictors.
And, as in regular regression analysis, you can specify that the level-2
relationship is linear (as we have so far) or more complex (nonlinear,
discontinuous, or potentially interactive). The stochastic specification
embodies assumptions about that level’s outcome (either Y at level-1 or
my; and 7; at level-2) that remains unexplained by the model’s predictors.
Because you know neither their nature nor value, you make assumptions
about these error distributions, typically assuming univariate normality at
level-1 and bivariate normality at level-2.

No analysis is complete until you examine the tenability of your assump-
tions. Of course, you can never be completely certain about the tenability
of assumptions because you lack the very data you need to evaluate their
tenability: information about the population from which your sample was
drawn. Assumptions describe true individual change trajectories, popula-
tion relationships between true individual growth parameters and level-2
predictors, and true errors for each person. All you can examine are the
observed properties of sample quantities—fitted individual change trajecto-
ries, estimated individual growth parameters, and sample residuals.

Must you check the assumptions underlying every statistical model you
fit? As much as we would like to say yes, reality dictates that we say no.
Repetitive model checking is neither efficient nor plausible. We suggest
instead that you examine the assumptions of several initial models and
then again in any model you cite or interpret explicitly.
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We offer simple multilevel model checking strategies in the three sec-
tions below. Section 4.8.1 reviews methods for assessing functional form;
although we introduced the basic ideas earlier, we reiterate them here
for completeness. We then extend familiar strategies from regression
analysis to comparable issues in the multilevel context: assessing nor-
mality (section 4.8.2) and homoscedasticity (section 4.8.3). Table 4.3
summarizes what you should look for at each stage of this work.

4.8.1 Checking Functional Form

The most direct way of examining the functional form assumptions in the
multilevel model for change is to inspect “outcome versus predictors”
plots at each level.

® At level-1. For each individual, examine empirical growth plots
and superimpose an OLS-estimated individual change trajectory.
Inspection should confirm the suitability of its hypothesized
shape.

® At level-2. Plot OLS estimates of the individual growth parameters
against each level-2 predictor. Inspection should confirm the suit-
ability of the hypothesized level-2 relationships.

For the eight adolescents in figure 4.1, for example, the hypothesis of
linear individual change seems reasonable for subjects 23, 32, 56 and 65,
but less so for subjects 04, 14, 41, and 82. But it is hard to argue for sys-
tematic deviations from linearity for these four cases given that the depar-
tures observed might be attributable to measurement error. Inspection
of empirical growth plots for the remaining adolescents leads to similar
conclusions.

Examination of the level-2 assumptions is facilitated by figure 4.4,
which plots OLS-estimated individual growth parameters against the two
substantive predictors. In the left pair of plots, for COA, there is nothing
to assess because a linear model is de facto acceptable for dichotomous
predictors. In the right pair of plots for PEER, the level-2 relationships
do appear to be linear (with only a few exceptions).

4.8.2 Checking Normality

Most multilevel modeling packages can output estimates of the level-1
and level-2 errors, g;, §; and ;. We label these estimates, €;, o and ¢,
“raw residuals.” As in regular regression, you can examine their behavior
using exploratory analyses. Although you can also conduct formal tests
for normality (using Wilks-Shapiro and Kolmogorov-Smirnov statistics,
say), we prefer visual inspection of the residual distributions.

Table 4.3: Strategies for checking assumptions in the multilevel model for change

the alcohol use data

, illustrated using Model F of tables 4.1 and 4.2 for
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Figure 4.4. Examining the level-2 linearity assumption in the multilevel model for
change. OLS estimated individual growth parameters (for the intercept and slope)
plotted vs. selected predictors. Left panel is for the predictor COA; right panel is for the
predictor PEER.

For each raw residual—the one at level-1 and the two at level-2—
examine a normal probability plot, a plot of their values against their asso-
ciated normal scores. If the distribution is normal, the points will form a
line. Any departure from linearity indicates a departure from normality.
As shown in the left column of figure 4.5, the normal probability plots
for Model F for the alcohol use data appear linear for the level-1 resid-
ual, %, and the first level-2 residual, (. The plot for second level-2 resid-
ual, {y,, is crooked, however, with a foreshortened lower tail falling closer
to the center than anticipated. As the second level-2 residual describes
unpredicted inter-individual variation in rates of change, we conclude
that variability in this distribution’s lower tail may be limited. This may
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132 Applied Longitudinal Data Analysis

be due to the bounded nature of ALCUSE, whose “floor” of zero imposes
a limit on the possible rates of change.

Plots of standardized residuals—either univariate plots or bivariate plots
against predictors—can also provide insight into the tenability of nor-
mality assumptions. If the raw residuals are normally distributed, approx-
imately 95% of the standardized residuals will fall within 2 standard
deviations of their center (i.e., only 5% will be greater than 2). Use
caution when applying this simple rule of thumb, however, because there
are other distributions that are not normal in which about 5% of the
observations also fall in these tails.

You can also plot the standardized residuals by ID to identify extreme
individuals (as in the right panel of figure 4.5). In the top plot, the stan-
dardized level-1 residuals appear to conform to normal theory assump-
tions—a large majority fall within 2 standard deviations of center, with
relatively few between 2 and 3, and none beyond. Plots of standardized
level-2 residuals suggest that the negative residuals tend to be smaller in
magnitude, “pulled in” toward the center of both plots. This feature is
most evident for the second level-2 residual, {y, in the lower plot, but
there is also evidence of its presence in the plot for {,. Again, compres-
sion of the lower tail may result from the fact that the outcome, ALCUSE,
has a “floor” of zero.

4.8.3 Checking Homoscedasticity

You can evaluate the homoscedasticity assumption by plotting raw resid-
uals against predictors: the level-1 residuals against the level-1 predictor,
the level-2 residuals against the level-2 predictor(s). If the assumption
holds, residual variability will be approximately equal at every predictor
value. Figure 4.6 presents these plots for Model F of the alcohol use data.

The level-1 residuals, £, have approximately equal range and variabil-
ity at all ages; so, too, do the level-2 residuals plotted against COA. The
plots of the level-2 residuals against PEER reveal a precipitous drop in
variability at the highest predictor values (PEER > 2.5), suggesting poten-
tial heteroscedasticity in this region. But the small sample size (only 82
individuals) makes it difficult to reach a definitive conclusion, so we
satisty ourselves that the model’s basic assumptions are met.

4.9 Model-Based (Empirical Bayes) Estimates of the
Individual Growth Parameters

One advantage of the multilevel model for change is that it improves the
precision with which we can estimate individual growth parameters. Yet
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Figure 4.6. Examining the homoscedasticity assumptions in the multilevel model for
change. Top panel presents raw level-1 residuals vs. the level-1 predictor AGE. Remaining

panels present raw level-2 residuals vs. the two level-2 predictors, COA and PEER.
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134 Applied Longitudinal Data Analysis

we have continued to display exploratory OLS estimates even though we
know they are inefficient. In this section, we present superior estimates
by combining OLS estimates with population average estimates derived
from the fitted model. The resultant trajectories, known as model-based or
empirical Bayes estimates, are usually your best bet if you would like to
display individual growth trajectories for particular sample members.

There are two distinct methods for deriving model-based estimates.
One is to explicitly construct a weighted average of the OLS and popu-
lation average estimates. The other, which we adopt here, has closer links
to the model’s conceptual underpinnings: first we obtain population
average trajectories based upon an individual’s predictor values and
second we add individual-specific information to these estimates (by
using the level-2 residuals).

We begin by computing a population average growth trajectory for
each person in the data set using a particular model’s estimates. Adopt-
ing Model F for the alcohol use data, we have:

TTo; = 0.394 +0.571COA; +0.695CPEER,
7t; = 0.271-0.151CPEER,.

Substituting each person’s observed predictor values into these equations
yields his or her population average trajectory. For example, for subject
23, a child of an alchoholic parent whose friends at age 14 did not drink
(resulting in a value of —1.018 for CPEER) we have:

Too3 = 0.394+0.571(1)+0.695(-1.018) = 0.257

. (4.20)
Ty =0.271-0.151(-1.018) = 0.425,

a trajectory that begins at 0.257 at age 14 and rises linearly by 0.425 each
year.

This intuitively appealing approach has a drawback: it yields identical
trajectories for everyone with the same specific combination of predictor
values. Indeed, it is indistinguishable from the same approach used in
Section 4.5.3 to obtain fitted trajectories for prototypical individuals. The
trajectory in equation 4.20 represents our expectations for the average
child of alchoholic parents whose young friends do not drink. However,
what we seek here is an individual trajectory for this person, subject 23.
His OLS trajectory does not take advantage of what we have learned from
model fitting. Yet his population average trajectory does not capitalize on
a key feature of the model: its explicit allowance for interindividual vari-
ation in initial status and rates of change.

The level-2 residuals, {, and {;, which distinguish each person’s
growth parameters from his or her population average trajectory, provide
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the missing link. Because each person has his or her own set of residu-
als, we can add them to the model’s fitted values:

Toi = Mo + Moy (4.21)
Ty = 7y + 7y,

where we place a ~ over the model-based estimates to distinguish them
from the population average trajectories. Adding residuals to the popu-
lation averages distinguishes each person from his or her peer group
(defined by his or her predictor values). Most multilevel modeling soft-
ware programs routinely provide these residuals (or the model-based esti-
mates themselves). For subject 23, for example, the child of alchoholic
parents whose peers did not drink, his level-2 residuals of 0.331 and
0.075 yield the following model-based estimates of his individual growth
trajectory:

Toos = 0.257+0.331=0.588
Tt 93 = 0.425+0.075 = 0.500.

Notice that both of these estimates are larger than the population average
values obtained above.

Figure 4.7 displays the observed data for the eight individuals depicted
in figure 4.1 and adds three types of fitted trajectories: (1) OLS-estimated
trajectories (dashed lines); (2) population average trajectories (faint
lines); and (3) model-based individual trajectories (bold lines). First,
notice that across the plots, the population average trajectories (the faint
lines) are the most stable, varying the least from person to person. We
expect greater stability because these are average trajectories for groups
of individuals who share particular predictor values. People who share
identical predictor values will have identical average trajectories, even
though their observed outcome data may differ. Population average tra-
jectories do not reflect the behavior of individuals and hence are likely
to be the least variable.

Next examine the model-based and OLS estimates (the bold and
dashed lines), each designed to provide the individual information we
seek. For three adolescents, the difference between estimates is small
(subjects 23, 41, and 65), but for four others (subjects 4, 14, 56, and 82)
it is pronounced and for subject 32, it is profound. We expect discrep-
ancies like these because we estimate each trajectory using a different
method and they depend upon the data in different ways. This does not
mean that one of them is “right” and the other “wrong.” Each has a set
of statistical properties for which it is valued. OLS estimates are unbiased
but inefficient; model-based estimates are biased, but more precise.
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Figure 4.7. Model-based (empirical Bayes) estimates of the individual growth trajectories.
Each plot presents the observed ALCUSE measurements (as data points), OLS fitted tra-
jectories (dashed lines), population average trajectories (faint lines), and model-based
empirical Bayes trajectories (bold lines).

Now notice how each model-based trajectory (in bold) falls between
its OLS and population average trajectories (the dashed and faint lines).
This is a hallmark of the model-based procedure to which we alluded
earlier. Numerically, the model-based estimates are weighted averages of
the OLS and population average trajectories. When OLS estimates are
precise, they have greater weight; when OLS estimates are imprecise, the
population average trajectories have greater weight. Because OLS trajec-
tories differ markedly from person to person, the model-based trajecto-
ries differ as well, but their discrepancies are smaller because the
population average trajectories are more stable. Statisticians use the term
“borrowing strength” to describe procedures like this in which individual
estimates are enhanced by incorporating information from others with
whom he or she shares attributes. In this case, the model-based trajecto-
ries are shrunk toward the average trajectory of that person’s peer group
(those with the same predictor values). This combination yields a supe-
rior, more precise, estimate.

Model-based estimates are also more precise because they require esti-
mation of fewer parameters. In positing the multilevel model for change,
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we assume that everyone shares the same level-1 residual variance, ol
When we fit OLS trajectories, we estimate a separate level-1 variance for
each individual in the sample. Fewer parameters in the multilevel model
for change mean greater precision.

In choosing between OLS- and model-based trajectories, you must
decide which criterion you value most, unbiasedness or precision. Statisti-
cians recommend precision—indeed, increased precision is a funda-
mental motivation for fitting the multilevel model. But as we extol the
virtues of model-based estimates, we conclude with a word of caution.
Their quality depends heavily on the quality of the model fit. If the model
is flawed, particularly if its level-2 components are specified incorrectly,
then the model-based estimates will be flawed as well.

How might you use model-based estimates like these in practice? Stage
(2001) provides a simple illustration of the power of this approach in his
evaluation of the relationship between first-grade reading fluency and
changes in oral reading proficiency in second-graders. He began by
fitting a multilevel model for change to four waves of second-grade data,
demonstrating that while first-grade performance was a strong predictor
of initial status it was not a statistically significant predictor of rate of
change. Stage went on to compute empirical Bayes estimates of the
number of words each child was able to read by the end of second grade
and he compared these estimates to: (1) the number of words each child
was observed to have read at the end of second grade; and (2) the
number of words each child was predicted to have read on the basis of
simple OLS regression analyses within child. As Stage suggests, adminis-
trators might be better off assigning children to summer school programs
(for remedial reading) not on the basis of observed or OLS-predicted
end-of-year scores but rather on the basis of the empirical Bayes estimates,
which yield more precise estimates of the child’s status at the end of the

year.



